Show simple item record

dc.contributor.authorValdés-Tresanco M.S
dc.contributor.authorValdés-Tresanco M.E
dc.contributor.authorRubio-Carrasquilla M
dc.contributor.authorValiente P.A
dc.contributor.authorMoreno E.
dc.date.accessioned2022-09-14T14:34:10Z
dc.date.available2022-09-14T14:34:10Z
dc.date.created2021
dc.identifier.issn24701343
dc.identifier.urihttp://hdl.handle.net/11407/7589
dc.descriptionVps34 is the only isoform of the PI3K family in fungi, making this protein an attractive target to develop new treatments against pathogenic fungi. The high structural similarity between the active sites of the human and fungal Vps34 makes repurposing of human Vps34 inhibitors an appealing strategy. Nonetheless, while some of the cross-reactive inhibitors might have the potential to treat fungal infections, a safer approach to prevent undesired side effects would be to identify molecules that specifically inhibit the fungal Vps34. This study presents the parameterization of four LIE models for estimating the binding free energy of Vps34-inhibitor complexes. Two models are parameterized using a multiparametric linear regression leaving one or more free parameters, while the other two are based on the LIE-D model. All of the models show good predictive capacity (R2 > 0.7, r > 0.85) and a low mean absolute error (MAE < 0.71 kcal/mol). The current study highlights the advantages of LIE-D-derived models when predicting the weight of the different contributions to the binding free energy. It is expected that this study will provide researchers with a valuable tool to identify new Vps34 inhibitors for relevant applications such as cancer treatment and the development of new antimicrobial agents. ©eng
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85118902527&doi=10.1021%2facsomega.1c03582&partnerID=40&md5=cff6b73d0fe2efb4f4b8dce4627c1f56
dc.sourceACS Omega
dc.titleTailored Parameterization of the LIE Method for Calculating the Binding Free Energy of Vps34-Inhibitor Complexes
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1021/acsomega.1c03582
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationValdés-Tresanco, M.S., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia
dc.affiliationValdés-Tresanco, M.E., Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
dc.affiliationRubio-Carrasquilla, M., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia, Grupo de Micología Médica y Experimental, Corporación Para Investigaciones Biológicas (CIB), Medellin, 050034, Colombia
dc.affiliationValiente, P.A., Faculty of Medicine, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E2, Canada, Center of Protein Studies, Faculty of Biology, University of Havana, La Habana, 10400, Cuba
dc.affiliationMoreno, E., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia
dc.relation.referencesFoster, F.M., Traer, C.J., Abraham, S.M., Fry, M.J., The Phosphoinositide (PI) 3-Kinase Family (2003) J. Cell Sci., 116, pp. 3037-3040
dc.relation.referencesChiu, H., Hopkins, B.D., Bagrodia, S., Cantley, L.C., Abraham, R.T., The PI3K Pathway in Human Disease (2017) Cell, 170, pp. 605-635
dc.relation.referencesYang, J., Nie, J., Ma, X., Wei, Y., Peng, Y., Wei, X., Targeting PI3K in Cancer: Mechanisms and Advances in Clinical Trials (2019) Mol. Cancer, 18, p. 26
dc.relation.referencesBacker, J.M., The Regulation and Function of Class III PI3Ks: Novel Roles for Vps34 (2008) Biochem. J., 410, pp. 1-17
dc.relation.referencesScorzoni, L., De Paula Silva, A.C.A., Marcos, C.M., Assato, P.A., De Melo, W.C.M.A., De Oliveira, H.C., Costa-Orlandi, C.B., Fusco-Almeida, A.M., Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Frontiers in Microbiology (2017) Front. Microbiol., 8, p. 36
dc.relation.referencesPushpakom, S., Iorio, F., Eyers, P.A., Escott, K.J., Hopper, S., Wells, A., Doig, A., Pirmohamed, M., Drug Repurposing: Progress, Challenges and Recommendations (2018) Nat. Rev. Drug Discovery, 8, pp. 41-58
dc.relation.referencesMiró-Canturri, A., Ayerbe-Algaba, R., Smani, Y., Drug Repurposing for the Treatment of Bacterial and Fungal Infections (2019) Front. Microbiol., 10, p. 41
dc.relation.referencesStylianou, M., Kulesskiy, E., Lopes, J.P., Granlund, M., Wennerberg, K., Urban, C.F., Antifungal Application of Nonantifungal Drugs (2014) Antimicrob. Agents Chemother., 58, pp. 1055-1062
dc.relation.referencesBraga, M.V., De Souza, W., Effects of Protein Kinase and Phosphatidylinositol-3 Kinase Inhibitors on Growth and Ultrastructure of Trypanosoma cruzi (2006) FEMS Microbiol. Lett., 256, pp. 209-216
dc.relation.referencesDali, B., Keita, M., Megnassan, E., Frecer, V., Miertus, S., Insight into Selectivity of Peptidomimetic Inhibitors with Modified Statine Core for PlasmepsinII of Plasmodium falciparum over Human Cathepsin D (2012) Chem. Biol. Drug Des., 79, pp. 411-430
dc.relation.referencesGierse, J.K., McDonald, J.J., Hauser, S.D., Rangwala, S.H., Koboldt, C.M., Seibert, K., A Single Amino Acid Difference between Cyclooxygenase-1 (COX-1) and -2 (COX-2) Reverses the Selectivity of COX-2 Specific Inhibitors (1996) J. Biol. Chem., 271, pp. 15810-15814
dc.relation.referencesValiente, P.A., Batista, P.R., Pupo, A., Pons, T., Valencia, A., Pascutti, P.G., Predicting Functional Residues in Plasmodium Falciparum Plasmepsins by Combining Sequence and Structural Analysis with Molecular Dynamics Simulations (2008) Proteins: Struct., Funct., Bioinf.2, 73, pp. 440-457
dc.relation.referencesYu, M., Gu, Q., Xu, J., Discovering New PI3Kα Inhibitors with a Strategy of Combining Ligand-Based and Structure-Based Virtual Screening (2018) J. Comput.-Aided Mol. Des., 32, pp. 347-361
dc.relation.referencesZhu, J., Zhang, H., Yu, L., Sun, H., Chen, Y., Cai, Y., Li, H., Jin, J., Computational Investigation of the Selectivity Mechanisms of PI3KδInhibition with Marketed Idelalisib: Combined Molecular Dynamics Simulation and Free Energy Calculation (2020) Struct. Chem., 32, pp. 699-707
dc.relation.referencesLi, K., Zhu, J., Xu, L., Jin, J., Rational Design of Novel Phosphoinositide 3-Kinase Gamma (PI3K ?) Selective Inhibitors: A Computational Investigation Integrating 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation (2019) Chem. Biodiversity, 16, p. e1900105
dc.relation.referencesLi, Y., Zhang, J., He, D., Liang, Q., Wang, Y., Characterization of Molecular Recognition of Phosphoinositide-3-Kinase α Inhibitor through Molecular Dynamics Simulation (2012) J. Mol. Model., 18, pp. 1907-1916
dc.relation.referencesBian, X., Dong, W., Zhao, Y., Sun, R., Kong, W., Li, Y., Definition of the Binding Mode of Phosphoinositide 3-Kinase α-Selective Inhibitor A-66S through Molecular Dynamics Simulation (2014) J. Mol. Model., 20, p. 2166
dc.relation.referencesWu, F., Hou, X., Luo, H., Zhou, M., Zhang, W., Ding, Z., Li, R., Exploring the Selectivity of PI3Kα and MTOR Inhibitors by 3D-QSAR, Molecular Dynamics Simulations and MM/GBSA Binding Free Energy Decomposition (2013) MedChemComm, 4, pp. 1482-1496
dc.relation.referencesGenheden, S., Ryde, U., Comparison of the Efficiency of the LIE and MM/GBSA Methods to Calculate Ligand-Binding Energies (2011) J. Chem. Theory Comput., 7, pp. 3768-3778
dc.relation.referencesÅqvist, J., Medina, C., Samuelsson, J.-E., A New Method for Predicting Binding Affinity in Computer-Aided Drug Design (1994) Protein Eng., Des. Sel., 7, pp. 385-391
dc.relation.referencesAqvist, J., Marelius, J., The Linear Interaction Energy Method for Predicting Ligand Binding Free Energies (2001) Comb. Chem. High Throughput Screening, 4, pp. 613-626
dc.relation.referencesÅqvist, J., Luzhkov, V.B., Brandsdal, B.O., Ligand Binding Affinities from MD Simulations (2002) Acc. Chem. Res., 35, pp. 358-365
dc.relation.referencesVan Dijk, M., Ter Laak, A.M., Wichard, J.D., Capoferri, L., Vermeulen, N.P.E., Geerke, D.P., Comprehensive and Automated Linear Interaction Energy Based Binding-Affinity Prediction for Multifarious Cytochrome P450 Aromatase Inhibitors (2017) J. Chem. Inf. Model., 57, pp. 2294-2308
dc.relation.referencesValiente, P.A., Gil, L.A., Batista, P.R., Caffarena, E.R., Pons, T., Pascutti, P.G., New Parameterization Approaches of the LIE Method to Improve Free Energy Calculations of PlmII-Inhibitors Complexes (2010) J. Comput. Chem., 31, pp. 2723-2734
dc.relation.referencesMiranda, W.E., Noskov, S.Y., Valiente, P.A., Improving the LIE Method for Binding Free Energy Calculations of Protein-Ligand Complexes (2015) J. Chem. Inf. Model., 55, pp. 1867-1877
dc.relation.referencesHao, D., He, X., Ji, B., Zhang, S., Wang, J., How Well Does the Extended Linear Interaction Energy Method Perform in Accurate Binding Free Energy Calculations? (2020) J. Chem. Inf. Model., 60, pp. 6624-6633
dc.relation.referencesRifai, E.A., Van Dijk, M., Vermeulen, N.P.E., Yanuar, A., Geerke, D.P., A Comparative Linear Interaction Energy and MM/PBSA Study on SIRT1-Ligand Binding Free Energy Calculation (2019) J. Chem. Inf. Model., 59, pp. 4018-4033
dc.relation.referencesAlmlöf, M., Carlsson, J., Åqvist, J., Improving the Accuracy of the Linear Interaction Energy Method for Solvation Free Energies (2007) J. Chem. Theory Comput., 3, pp. 2162-2175
dc.relation.referencesPoongavanam, V., Kongsted, J., Binding Affinity Models for Falcipain Inhibition Based on the Linear Interaction Energy Method (2016) J. Mol. Graphics Modell., 70, pp. 236-245
dc.relation.referencesWebb, G.I., Sammut, C., Perlich, C., Horváth, T., Wrobel, S., Korb, K.B., Noble, W.S., Raedt, L.De., (2011) Leave-One-Out Cross-Validation. In Encyclopedia of Machine Learning, pp. 600-601. , Springer, US
dc.relation.referencesShirts, M.R., Mobley, D.L., Brown, S.P., Free-Energy Calculations in Structure-Based Drug Design (2010) Drug Design, pp. 61-86. , Cambridge University Press
dc.relation.referencesKnight, J.D.R., Qian, B., Baker, D., Kothary, R., Conservation, Variability and the Modeling of Active Protein Kinases (2007) PLoS One, 2, p. 982
dc.relation.referencesWang, W., Wang, J., Kollman, P.A., What Determines the van der Waals Coefficient? In the LIE (Linear Interaction Energy) Method to Estimate Binding Free Energies Using Molecular Dynamics Simulations? (1999) Proteins Struct. Funct. Genet., 34, pp. 395-402
dc.relation.referencesBarratt, E., Bronowska, A., Vondrášek, J., Černý, J., Bingham, R., Phillips, S., Homans, S.W., Thermodynamic Penalty Arising from Burial of a Ligand Polar Group within a Hydrophobic Pocket of a Protein Receptor (2006) J. Mol. Biol., 362, pp. 994-1003
dc.relation.referencesKawasaki, Y., Freire, E., Finding a Better Path to Drug Selectivity (2011) Drug Discovery Today, 16, pp. 985-990
dc.relation.referencesMobley, D.L., Dill, K.A., Binding of Small-Molecule Ligands to Proteins: "what You See" Is Not Always "what You Get." (2009) Structure, 17, pp. 489-498
dc.relation.referencesCournia, Z., Allen, B.K., Beuming, T., Pearlman, D.A., Radak, B.K., Sherman, W., Rigorous Free Energy Simulations in Virtual Screening (2020) J. Chem. Inf. Model., 60, pp. 4153-4169
dc.relation.referencesPerdih, A., Wolber, G., Solmajer, T., Molecular Dynamics Simulation and Linear Interaction Energy Study of D-Glu-Based Inhibitors of the MurD Ligase (2013) J. Comput.-Aided Mol. Des., 27, pp. 723-738
dc.relation.referencesCa, Y., Pa, W.H., Relationship between the Inhibition Constant (K1) and the Concentration of Inhibitor Which Causes 50 per Cent Inhibition (I50) of an Enzymatic Reaction (1973) Biochem. Pharmacol., 22, pp. 3099-3108
dc.relation.referencesRonan, B., Flamand, O., Vescovi, L., Dureuil, C., Durand, L., Fassy, F., Bachelot, M.F., Pasquier, B., A Highly Potent and Selective Vps34 Inhibitor Alters Vesicle Trafficking and Autophagy (2014) Nat. Chem. Biol., 10, pp. 1013-1019
dc.relation.referencesDowdle, W.E., Nyfeler, B., Nagel, J., Elling, R.A., Liu, S., Triantafellow, E., Menon, S., Murphy, L.O., Selective VPS34 Inhibitor Blocks Autophagy and Uncovers a Role for NCOA4 in Ferritin Degradation and Iron Homeostasis in Vivo (2014) Nat. Cell Biol., 16, pp. 1069-1079
dc.relation.referencesPasquier, B., El-Ahmad, Y., Filoche-Rommé, B., Dureuil, C., Fassy, F., Abecassis, P.Y., Mathieu, M., Ronan, B., Discovery of (2 S)-8-[(3 R)-3-Methylmorpholin-4-Yl]-1-(3-Methyl-2-Oxobutyl)-2-(Trifluoromethyl)-3,4-Dihydro-2 H -Pyrimido[1,2- a]Pyrimidin-6-One: A Novel Potent and Selective Inhibitor of Vps34 for the Treatment of Solid Tumors (2015) J. Med. Chem., 58, pp. 376-400
dc.relation.referencesToledo-Sherman, L., Breccia, P., Cachope, R., Bate, J.R., Angulo-Herrera, I., Wishart, G., Matthews, K.L., Dominguez, C., Optimization of Potent and Selective Ataxia Telangiectasia-Mutated Inhibitors Suitable for a Proof-of-Concept Study in Huntington's Disease Models (2019) J. Med. Chem., 62, pp. 2988-3008
dc.relation.referencesCertal, V., Carry, J.C., Halley, F., Virone-Oddos, A., Thompson, F., Filoche-Rommé, B., El-Ahmad, Y., Schio, L., Discovery and Optimization of Pyrimidone Indoline Amide PI3Kβ Inhibitors for the Treatment of Phosphatase and Tensin Homologue (PTEN)-Deficient Cancers (2014) J. Med. Chem., 57, pp. 903-920
dc.relation.referencesBurger, M.T., Pecchi, S., Wagman, A., Ni, Z.J., Knapp, M., Hendrickson, T., Atallah, G., Voliva, C.F., Identification of NVP-BKM120 as a Potent, Selective, Orally Bioavailable Class i PI3 Kinase Inhibitor for Treating Cancer (2011) ACS Med. Chem. Lett., 2, pp. 774-779
dc.relation.referencesMiller, S., Tavshanjian, B., Oleksy, A., Perisic, O., Houseman, B.T., Shokat, K.M., Williams, R.L., Shaping Development of Autophagy Inhibitors with the Structure of the Lipid Kinase Vps34 (2010) Science, 327, pp. 1638-1642
dc.relation.referencesBago, R., Malik, N., Munson, M.J., Prescott, A.R., Davies, P., Sommer, E., Shpiro, N., Alessi, D.R., Characterization of VPS34-IN1, a Selective Inhibitor of Vps34, Reveals That the Phosphatidylinositol 3-Phosphate-Binding SGK3 Protein Kinase Is a Downstream Target of Class III Phosphoinositide 3-Kinase (2014) Biochem. J., 463, pp. 413-427
dc.relation.referencesHonda, A., Harrington, E., Cornella-Taracido, I., Furet, P., Knapp, M.S., Glick, M., Triantafellow, E., Keaney, E.P., Potent, Selective, and Orally Bioavailable Inhibitors of VPS34 Provide Chemical Tools to Modulate Autophagy in Vivo (2016) ACS Med. Chem. Lett., 7, pp. 72-76
dc.relation.referencesBerman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., The Protein Data Bank (2000) Nucleic Acids Res., 28, pp. 235-242
dc.relation.referencesBurley, S.K., Berman, H.M., Bhikadiya, C., Bi, C., Chen, L., Di Costanzo, L., Christie, C., Zardecki, C., RCSB Protein Data Bank: Biological Macromolecular Structures Enabling Research and Education in Fundamental Biology, Biomedicine, Biotechnology and Energy (2019) Nucleic Acids Res., 47, pp. D464-D474
dc.relation.references(2020) ChemAxon, , Http://Www.Chemaxon.Com, (Last accessed Dec 9, 2021)
dc.relation.referencesTrott, O., Olson, A.J., AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading (2010) J. Comput. Chem., 31, pp. 455-461
dc.relation.referencesValdés-Tresanco, M.S., Valdés-Tresanco, M.E., Valiente, P.A., Moreno, E., AMDock: A Versatile Graphical Tool for Assisting Molecular Docking with Autodock Vina and Autodock4 (2020) Biol. Direct, 15, p. 12
dc.relation.referencesWang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A., Development and Testing of a General Amber Force Field (2004) J. Comput. Chem., 25, pp. 1157-1174
dc.relation.referencesJakalian, A., Jack, D.B., Bayly, C.I., Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC Model: II. Parameterization and Validation (2002) J. Comput. Chem., 23, pp. 1623-1641
dc.relation.referencesWang, J., Wang, W., Kollman, P.A., Case, D.A., Automatic Atom Type and Bond Type Perception in Molecular Mechanical Calculations (2006) J. Mol. Graphics Modell., 25, pp. 247-260
dc.relation.referencesCase, D.A., Belfon, K., Ben-Shalom, I.Y., Brozell, S.R., Cerutti, D.S., Iii E., C.T., Cruzeiro, V.W.D., Kovalenko, P.A., (2019) Amber 2018 and AmberTools 2019, , University of California, San Francisco
dc.relation.referencesGordon, J.C., Myers, J.B., Folta, T., Shoja, V., Heath, L.S., Onufriev, A., H++: A Server for Estimating PKas and Adding Missing Hydrogens to Macromolecules (2005) Nucleic Acids Res., 33, pp. W368-W371
dc.relation.referencesMyers, J., Grothaus, G., Narayanan, S., Onufriev, A., A Simple Clustering Algorithm Can Be Accurate Enough for Use in Calculations of PKs in Macromolecules (2006) Proteins: Struct., Funct., Bioinf., 63, pp. 928-938
dc.relation.referencesAnandakrishnan, R., Aguilar, B., Onufriev, A.V., H++ 3.0: Automating PK Prediction and the Preparation of Biomolecular Structures for Atomistic Molecular Modeling and Simulations (2012) Nucleic Acids Res., 40, pp. W537-W541
dc.relation.referencesAbraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindah, E., Gromacs: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers (2015) SoftwareX, 12, pp. 19-25
dc.relation.referencesMark, P., Nilsson, L., Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K (2001) J. Phys. Chem. A, 105, pp. 9954-9960
dc.relation.referencesHess, B., Bekker, H., Berendsen, H.J.C.C., Fraaije, J.G.E.M.E.M., LINCS: A Linear Constraint Solver for Molecular Simulations (1997) J. Comput. Chem., 18, pp. 1463-1472
dc.relation.referencesBerendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Dinola, A., Haak, J.R., Molecular Dynamics with Coupling to an External Bath (1984) J. Chem. Phys., 81, pp. 3684-3690
dc.relation.referencesVan Gunsteren, W.F., Berendsen, H.J.C., A Leap-Frog Algorithm for Stochastic Dynamics (1988) Mol. Simul., 1, pp. 173-185
dc.relation.referencesParrinello, M., Rahman, A., Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method (1981) J. Appl. Phys., 52, pp. 7182-7190
dc.relation.referencesEssmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G., A Smooth Particle Mesh Ewald Method (1995) J. Chem. Phys., 103, pp. 8577-8593
dc.relation.referencesDarden, T., York, D., Pedersen, L., Particle Mesh Ewald: An N·log(N) Method for Ewald Sums in Large Systems (1993) J. Chem. Phys., 98, pp. 10089-10092
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record