dc.contributor.author | Valdés-Tresanco M.S | |
dc.contributor.author | Valdés-Tresanco M.E | |
dc.contributor.author | Rubio-Carrasquilla M | |
dc.contributor.author | Valiente P.A | |
dc.contributor.author | Moreno E. | |
dc.date.accessioned | 2022-09-14T14:34:10Z | |
dc.date.available | 2022-09-14T14:34:10Z | |
dc.date.created | 2021 | |
dc.identifier.issn | 24701343 | |
dc.identifier.uri | http://hdl.handle.net/11407/7589 | |
dc.description | Vps34 is the only isoform of the PI3K family in fungi, making this protein an attractive target to develop new treatments against pathogenic fungi. The high structural similarity between the active sites of the human and fungal Vps34 makes repurposing of human Vps34 inhibitors an appealing strategy. Nonetheless, while some of the cross-reactive inhibitors might have the potential to treat fungal infections, a safer approach to prevent undesired side effects would be to identify molecules that specifically inhibit the fungal Vps34. This study presents the parameterization of four LIE models for estimating the binding free energy of Vps34-inhibitor complexes. Two models are parameterized using a multiparametric linear regression leaving one or more free parameters, while the other two are based on the LIE-D model. All of the models show good predictive capacity (R2 > 0.7, r > 0.85) and a low mean absolute error (MAE < 0.71 kcal/mol). The current study highlights the advantages of LIE-D-derived models when predicting the weight of the different contributions to the binding free energy. It is expected that this study will provide researchers with a valuable tool to identify new Vps34 inhibitors for relevant applications such as cancer treatment and the development of new antimicrobial agents. © | eng |
dc.language.iso | eng | |
dc.publisher | American Chemical Society | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85118902527&doi=10.1021%2facsomega.1c03582&partnerID=40&md5=cff6b73d0fe2efb4f4b8dce4627c1f56 | |
dc.source | ACS Omega | |
dc.title | Tailored Parameterization of the LIE Method for Calculating the Binding Free Energy of Vps34-Inhibitor Complexes | |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ciencias Básicas | |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.1021/acsomega.1c03582 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.affiliation | Valdés-Tresanco, M.S., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia | |
dc.affiliation | Valdés-Tresanco, M.E., Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada | |
dc.affiliation | Rubio-Carrasquilla, M., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia, Grupo de Micología Médica y Experimental, Corporación Para Investigaciones Biológicas (CIB), Medellin, 050034, Colombia | |
dc.affiliation | Valiente, P.A., Faculty of Medicine, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E2, Canada, Center of Protein Studies, Faculty of Biology, University of Havana, La Habana, 10400, Cuba | |
dc.affiliation | Moreno, E., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia | |
dc.relation.references | Foster, F.M., Traer, C.J., Abraham, S.M., Fry, M.J., The Phosphoinositide (PI) 3-Kinase Family (2003) J. Cell Sci., 116, pp. 3037-3040 | |
dc.relation.references | Chiu, H., Hopkins, B.D., Bagrodia, S., Cantley, L.C., Abraham, R.T., The PI3K Pathway in Human Disease (2017) Cell, 170, pp. 605-635 | |
dc.relation.references | Yang, J., Nie, J., Ma, X., Wei, Y., Peng, Y., Wei, X., Targeting PI3K in Cancer: Mechanisms and Advances in Clinical Trials (2019) Mol. Cancer, 18, p. 26 | |
dc.relation.references | Backer, J.M., The Regulation and Function of Class III PI3Ks: Novel Roles for Vps34 (2008) Biochem. J., 410, pp. 1-17 | |
dc.relation.references | Scorzoni, L., De Paula Silva, A.C.A., Marcos, C.M., Assato, P.A., De Melo, W.C.M.A., De Oliveira, H.C., Costa-Orlandi, C.B., Fusco-Almeida, A.M., Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Frontiers in Microbiology (2017) Front. Microbiol., 8, p. 36 | |
dc.relation.references | Pushpakom, S., Iorio, F., Eyers, P.A., Escott, K.J., Hopper, S., Wells, A., Doig, A., Pirmohamed, M., Drug Repurposing: Progress, Challenges and Recommendations (2018) Nat. Rev. Drug Discovery, 8, pp. 41-58 | |
dc.relation.references | Miró-Canturri, A., Ayerbe-Algaba, R., Smani, Y., Drug Repurposing for the Treatment of Bacterial and Fungal Infections (2019) Front. Microbiol., 10, p. 41 | |
dc.relation.references | Stylianou, M., Kulesskiy, E., Lopes, J.P., Granlund, M., Wennerberg, K., Urban, C.F., Antifungal Application of Nonantifungal Drugs (2014) Antimicrob. Agents Chemother., 58, pp. 1055-1062 | |
dc.relation.references | Braga, M.V., De Souza, W., Effects of Protein Kinase and Phosphatidylinositol-3 Kinase Inhibitors on Growth and Ultrastructure of Trypanosoma cruzi (2006) FEMS Microbiol. Lett., 256, pp. 209-216 | |
dc.relation.references | Dali, B., Keita, M., Megnassan, E., Frecer, V., Miertus, S., Insight into Selectivity of Peptidomimetic Inhibitors with Modified Statine Core for PlasmepsinII of Plasmodium falciparum over Human Cathepsin D (2012) Chem. Biol. Drug Des., 79, pp. 411-430 | |
dc.relation.references | Gierse, J.K., McDonald, J.J., Hauser, S.D., Rangwala, S.H., Koboldt, C.M., Seibert, K., A Single Amino Acid Difference between Cyclooxygenase-1 (COX-1) and -2 (COX-2) Reverses the Selectivity of COX-2 Specific Inhibitors (1996) J. Biol. Chem., 271, pp. 15810-15814 | |
dc.relation.references | Valiente, P.A., Batista, P.R., Pupo, A., Pons, T., Valencia, A., Pascutti, P.G., Predicting Functional Residues in Plasmodium Falciparum Plasmepsins by Combining Sequence and Structural Analysis with Molecular Dynamics Simulations (2008) Proteins: Struct., Funct., Bioinf.2, 73, pp. 440-457 | |
dc.relation.references | Yu, M., Gu, Q., Xu, J., Discovering New PI3Kα Inhibitors with a Strategy of Combining Ligand-Based and Structure-Based Virtual Screening (2018) J. Comput.-Aided Mol. Des., 32, pp. 347-361 | |
dc.relation.references | Zhu, J., Zhang, H., Yu, L., Sun, H., Chen, Y., Cai, Y., Li, H., Jin, J., Computational Investigation of the Selectivity Mechanisms of PI3KδInhibition with Marketed Idelalisib: Combined Molecular Dynamics Simulation and Free Energy Calculation (2020) Struct. Chem., 32, pp. 699-707 | |
dc.relation.references | Li, K., Zhu, J., Xu, L., Jin, J., Rational Design of Novel Phosphoinositide 3-Kinase Gamma (PI3K ?) Selective Inhibitors: A Computational Investigation Integrating 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation (2019) Chem. Biodiversity, 16, p. e1900105 | |
dc.relation.references | Li, Y., Zhang, J., He, D., Liang, Q., Wang, Y., Characterization of Molecular Recognition of Phosphoinositide-3-Kinase α Inhibitor through Molecular Dynamics Simulation (2012) J. Mol. Model., 18, pp. 1907-1916 | |
dc.relation.references | Bian, X., Dong, W., Zhao, Y., Sun, R., Kong, W., Li, Y., Definition of the Binding Mode of Phosphoinositide 3-Kinase α-Selective Inhibitor A-66S through Molecular Dynamics Simulation (2014) J. Mol. Model., 20, p. 2166 | |
dc.relation.references | Wu, F., Hou, X., Luo, H., Zhou, M., Zhang, W., Ding, Z., Li, R., Exploring the Selectivity of PI3Kα and MTOR Inhibitors by 3D-QSAR, Molecular Dynamics Simulations and MM/GBSA Binding Free Energy Decomposition (2013) MedChemComm, 4, pp. 1482-1496 | |
dc.relation.references | Genheden, S., Ryde, U., Comparison of the Efficiency of the LIE and MM/GBSA Methods to Calculate Ligand-Binding Energies (2011) J. Chem. Theory Comput., 7, pp. 3768-3778 | |
dc.relation.references | Åqvist, J., Medina, C., Samuelsson, J.-E., A New Method for Predicting Binding Affinity in Computer-Aided Drug Design (1994) Protein Eng., Des. Sel., 7, pp. 385-391 | |
dc.relation.references | Aqvist, J., Marelius, J., The Linear Interaction Energy Method for Predicting Ligand Binding Free Energies (2001) Comb. Chem. High Throughput Screening, 4, pp. 613-626 | |
dc.relation.references | Åqvist, J., Luzhkov, V.B., Brandsdal, B.O., Ligand Binding Affinities from MD Simulations (2002) Acc. Chem. Res., 35, pp. 358-365 | |
dc.relation.references | Van Dijk, M., Ter Laak, A.M., Wichard, J.D., Capoferri, L., Vermeulen, N.P.E., Geerke, D.P., Comprehensive and Automated Linear Interaction Energy Based Binding-Affinity Prediction for Multifarious Cytochrome P450 Aromatase Inhibitors (2017) J. Chem. Inf. Model., 57, pp. 2294-2308 | |
dc.relation.references | Valiente, P.A., Gil, L.A., Batista, P.R., Caffarena, E.R., Pons, T., Pascutti, P.G., New Parameterization Approaches of the LIE Method to Improve Free Energy Calculations of PlmII-Inhibitors Complexes (2010) J. Comput. Chem., 31, pp. 2723-2734 | |
dc.relation.references | Miranda, W.E., Noskov, S.Y., Valiente, P.A., Improving the LIE Method for Binding Free Energy Calculations of Protein-Ligand Complexes (2015) J. Chem. Inf. Model., 55, pp. 1867-1877 | |
dc.relation.references | Hao, D., He, X., Ji, B., Zhang, S., Wang, J., How Well Does the Extended Linear Interaction Energy Method Perform in Accurate Binding Free Energy Calculations? (2020) J. Chem. Inf. Model., 60, pp. 6624-6633 | |
dc.relation.references | Rifai, E.A., Van Dijk, M., Vermeulen, N.P.E., Yanuar, A., Geerke, D.P., A Comparative Linear Interaction Energy and MM/PBSA Study on SIRT1-Ligand Binding Free Energy Calculation (2019) J. Chem. Inf. Model., 59, pp. 4018-4033 | |
dc.relation.references | Almlöf, M., Carlsson, J., Åqvist, J., Improving the Accuracy of the Linear Interaction Energy Method for Solvation Free Energies (2007) J. Chem. Theory Comput., 3, pp. 2162-2175 | |
dc.relation.references | Poongavanam, V., Kongsted, J., Binding Affinity Models for Falcipain Inhibition Based on the Linear Interaction Energy Method (2016) J. Mol. Graphics Modell., 70, pp. 236-245 | |
dc.relation.references | Webb, G.I., Sammut, C., Perlich, C., Horváth, T., Wrobel, S., Korb, K.B., Noble, W.S., Raedt, L.De., (2011) Leave-One-Out Cross-Validation. In Encyclopedia of Machine Learning, pp. 600-601. , Springer, US | |
dc.relation.references | Shirts, M.R., Mobley, D.L., Brown, S.P., Free-Energy Calculations in Structure-Based Drug Design (2010) Drug Design, pp. 61-86. , Cambridge University Press | |
dc.relation.references | Knight, J.D.R., Qian, B., Baker, D., Kothary, R., Conservation, Variability and the Modeling of Active Protein Kinases (2007) PLoS One, 2, p. 982 | |
dc.relation.references | Wang, W., Wang, J., Kollman, P.A., What Determines the van der Waals Coefficient? In the LIE (Linear Interaction Energy) Method to Estimate Binding Free Energies Using Molecular Dynamics Simulations? (1999) Proteins Struct. Funct. Genet., 34, pp. 395-402 | |
dc.relation.references | Barratt, E., Bronowska, A., Vondrášek, J., Černý, J., Bingham, R., Phillips, S., Homans, S.W., Thermodynamic Penalty Arising from Burial of a Ligand Polar Group within a Hydrophobic Pocket of a Protein Receptor (2006) J. Mol. Biol., 362, pp. 994-1003 | |
dc.relation.references | Kawasaki, Y., Freire, E., Finding a Better Path to Drug Selectivity (2011) Drug Discovery Today, 16, pp. 985-990 | |
dc.relation.references | Mobley, D.L., Dill, K.A., Binding of Small-Molecule Ligands to Proteins: "what You See" Is Not Always "what You Get." (2009) Structure, 17, pp. 489-498 | |
dc.relation.references | Cournia, Z., Allen, B.K., Beuming, T., Pearlman, D.A., Radak, B.K., Sherman, W., Rigorous Free Energy Simulations in Virtual Screening (2020) J. Chem. Inf. Model., 60, pp. 4153-4169 | |
dc.relation.references | Perdih, A., Wolber, G., Solmajer, T., Molecular Dynamics Simulation and Linear Interaction Energy Study of D-Glu-Based Inhibitors of the MurD Ligase (2013) J. Comput.-Aided Mol. Des., 27, pp. 723-738 | |
dc.relation.references | Ca, Y., Pa, W.H., Relationship between the Inhibition Constant (K1) and the Concentration of Inhibitor Which Causes 50 per Cent Inhibition (I50) of an Enzymatic Reaction (1973) Biochem. Pharmacol., 22, pp. 3099-3108 | |
dc.relation.references | Ronan, B., Flamand, O., Vescovi, L., Dureuil, C., Durand, L., Fassy, F., Bachelot, M.F., Pasquier, B., A Highly Potent and Selective Vps34 Inhibitor Alters Vesicle Trafficking and Autophagy (2014) Nat. Chem. Biol., 10, pp. 1013-1019 | |
dc.relation.references | Dowdle, W.E., Nyfeler, B., Nagel, J., Elling, R.A., Liu, S., Triantafellow, E., Menon, S., Murphy, L.O., Selective VPS34 Inhibitor Blocks Autophagy and Uncovers a Role for NCOA4 in Ferritin Degradation and Iron Homeostasis in Vivo (2014) Nat. Cell Biol., 16, pp. 1069-1079 | |
dc.relation.references | Pasquier, B., El-Ahmad, Y., Filoche-Rommé, B., Dureuil, C., Fassy, F., Abecassis, P.Y., Mathieu, M., Ronan, B., Discovery of (2 S)-8-[(3 R)-3-Methylmorpholin-4-Yl]-1-(3-Methyl-2-Oxobutyl)-2-(Trifluoromethyl)-3,4-Dihydro-2 H -Pyrimido[1,2- a]Pyrimidin-6-One: A Novel Potent and Selective Inhibitor of Vps34 for the Treatment of Solid Tumors (2015) J. Med. Chem., 58, pp. 376-400 | |
dc.relation.references | Toledo-Sherman, L., Breccia, P., Cachope, R., Bate, J.R., Angulo-Herrera, I., Wishart, G., Matthews, K.L., Dominguez, C., Optimization of Potent and Selective Ataxia Telangiectasia-Mutated Inhibitors Suitable for a Proof-of-Concept Study in Huntington's Disease Models (2019) J. Med. Chem., 62, pp. 2988-3008 | |
dc.relation.references | Certal, V., Carry, J.C., Halley, F., Virone-Oddos, A., Thompson, F., Filoche-Rommé, B., El-Ahmad, Y., Schio, L., Discovery and Optimization of Pyrimidone Indoline Amide PI3Kβ Inhibitors for the Treatment of Phosphatase and Tensin Homologue (PTEN)-Deficient Cancers (2014) J. Med. Chem., 57, pp. 903-920 | |
dc.relation.references | Burger, M.T., Pecchi, S., Wagman, A., Ni, Z.J., Knapp, M., Hendrickson, T., Atallah, G., Voliva, C.F., Identification of NVP-BKM120 as a Potent, Selective, Orally Bioavailable Class i PI3 Kinase Inhibitor for Treating Cancer (2011) ACS Med. Chem. Lett., 2, pp. 774-779 | |
dc.relation.references | Miller, S., Tavshanjian, B., Oleksy, A., Perisic, O., Houseman, B.T., Shokat, K.M., Williams, R.L., Shaping Development of Autophagy Inhibitors with the Structure of the Lipid Kinase Vps34 (2010) Science, 327, pp. 1638-1642 | |
dc.relation.references | Bago, R., Malik, N., Munson, M.J., Prescott, A.R., Davies, P., Sommer, E., Shpiro, N., Alessi, D.R., Characterization of VPS34-IN1, a Selective Inhibitor of Vps34, Reveals That the Phosphatidylinositol 3-Phosphate-Binding SGK3 Protein Kinase Is a Downstream Target of Class III Phosphoinositide 3-Kinase (2014) Biochem. J., 463, pp. 413-427 | |
dc.relation.references | Honda, A., Harrington, E., Cornella-Taracido, I., Furet, P., Knapp, M.S., Glick, M., Triantafellow, E., Keaney, E.P., Potent, Selective, and Orally Bioavailable Inhibitors of VPS34 Provide Chemical Tools to Modulate Autophagy in Vivo (2016) ACS Med. Chem. Lett., 7, pp. 72-76 | |
dc.relation.references | Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., The Protein Data Bank (2000) Nucleic Acids Res., 28, pp. 235-242 | |
dc.relation.references | Burley, S.K., Berman, H.M., Bhikadiya, C., Bi, C., Chen, L., Di Costanzo, L., Christie, C., Zardecki, C., RCSB Protein Data Bank: Biological Macromolecular Structures Enabling Research and Education in Fundamental Biology, Biomedicine, Biotechnology and Energy (2019) Nucleic Acids Res., 47, pp. D464-D474 | |
dc.relation.references | (2020) ChemAxon, , Http://Www.Chemaxon.Com, (Last accessed Dec 9, 2021) | |
dc.relation.references | Trott, O., Olson, A.J., AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading (2010) J. Comput. Chem., 31, pp. 455-461 | |
dc.relation.references | Valdés-Tresanco, M.S., Valdés-Tresanco, M.E., Valiente, P.A., Moreno, E., AMDock: A Versatile Graphical Tool for Assisting Molecular Docking with Autodock Vina and Autodock4 (2020) Biol. Direct, 15, p. 12 | |
dc.relation.references | Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A., Development and Testing of a General Amber Force Field (2004) J. Comput. Chem., 25, pp. 1157-1174 | |
dc.relation.references | Jakalian, A., Jack, D.B., Bayly, C.I., Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC Model: II. Parameterization and Validation (2002) J. Comput. Chem., 23, pp. 1623-1641 | |
dc.relation.references | Wang, J., Wang, W., Kollman, P.A., Case, D.A., Automatic Atom Type and Bond Type Perception in Molecular Mechanical Calculations (2006) J. Mol. Graphics Modell., 25, pp. 247-260 | |
dc.relation.references | Case, D.A., Belfon, K., Ben-Shalom, I.Y., Brozell, S.R., Cerutti, D.S., Iii E., C.T., Cruzeiro, V.W.D., Kovalenko, P.A., (2019) Amber 2018 and AmberTools 2019, , University of California, San Francisco | |
dc.relation.references | Gordon, J.C., Myers, J.B., Folta, T., Shoja, V., Heath, L.S., Onufriev, A., H++: A Server for Estimating PKas and Adding Missing Hydrogens to Macromolecules (2005) Nucleic Acids Res., 33, pp. W368-W371 | |
dc.relation.references | Myers, J., Grothaus, G., Narayanan, S., Onufriev, A., A Simple Clustering Algorithm Can Be Accurate Enough for Use in Calculations of PKs in Macromolecules (2006) Proteins: Struct., Funct., Bioinf., 63, pp. 928-938 | |
dc.relation.references | Anandakrishnan, R., Aguilar, B., Onufriev, A.V., H++ 3.0: Automating PK Prediction and the Preparation of Biomolecular Structures for Atomistic Molecular Modeling and Simulations (2012) Nucleic Acids Res., 40, pp. W537-W541 | |
dc.relation.references | Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindah, E., Gromacs: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers (2015) SoftwareX, 12, pp. 19-25 | |
dc.relation.references | Mark, P., Nilsson, L., Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K (2001) J. Phys. Chem. A, 105, pp. 9954-9960 | |
dc.relation.references | Hess, B., Bekker, H., Berendsen, H.J.C.C., Fraaije, J.G.E.M.E.M., LINCS: A Linear Constraint Solver for Molecular Simulations (1997) J. Comput. Chem., 18, pp. 1463-1472 | |
dc.relation.references | Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Dinola, A., Haak, J.R., Molecular Dynamics with Coupling to an External Bath (1984) J. Chem. Phys., 81, pp. 3684-3690 | |
dc.relation.references | Van Gunsteren, W.F., Berendsen, H.J.C., A Leap-Frog Algorithm for Stochastic Dynamics (1988) Mol. Simul., 1, pp. 173-185 | |
dc.relation.references | Parrinello, M., Rahman, A., Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method (1981) J. Appl. Phys., 52, pp. 7182-7190 | |
dc.relation.references | Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G., A Smooth Particle Mesh Ewald Method (1995) J. Chem. Phys., 103, pp. 8577-8593 | |
dc.relation.references | Darden, T., York, D., Pedersen, L., Particle Mesh Ewald: An N·log(N) Method for Ewald Sums in Large Systems (1993) J. Chem. Phys., 98, pp. 10089-10092 | |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |