Mostrar el registro sencillo del ítem

dc.contributor.authorMejia M.I
dc.contributor.authorMosquera-Pretelt J
dc.contributor.authorMarín J.M
dc.contributor.authorPulgarín C
dc.contributor.authorKiwi J.
dc.date.accessioned2022-09-14T14:34:17Z
dc.date.available2022-09-14T14:34:17Z
dc.date.created2022
dc.identifier.issn17351472
dc.identifier.urihttp://hdl.handle.net/11407/7606
dc.descriptionSuccinic acid was used as a spacer to bind titanium dioxide onto nylon as a new approach to develop self-cleaning fibers. Photoinduced decomposition of stains was achieved within acceptable times under ultraviolet A irradiation, a component of both solar light and indoor lamps spectrum. The surface properties of this innovative film were determined by scanning electron microscopy, electron-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. The self-cleaning process was evaluated by analyzing the discoloration of coffee and palm oil stains by ultraviolet/visible diffuse reflection spectroscopy and mineralization via CO2 evolution, recorded using an infrared sensor. The results indicate that grafting TiO2 onto nylon, a synthetic fiber, using succinic acid is a successful chemical binding method, leading to a new self-cleaning material for stain discoloration. This new material is a promising solution to save water and reduce wastewater generated by the use of conventional substances used in textile cleaning. © 2022, The Author(s).eng
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85127694959&doi=10.1007%2fs13762-022-04085-z&partnerID=40&md5=f72e8a536149b4e8745ac574502ed430
dc.sourceInternational Journal of Environmental Science and Technology
dc.titleTiO2/spacer succinate films grafted onto nylon as a new approach to develop self-cleaning textile fibers that remove stains: a promising way to reduce reliance on cleaning water
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.type.spaArtículo
dc.identifier.doi10.1007/s13762-022-04085-z
dc.subject.keywordChemical bindingeng
dc.subject.keywordCoatingeng
dc.subject.keywordCoffeeeng
dc.subject.keywordPalm oileng
dc.subject.keywordSuccinic acideng
dc.subject.keywordSynthetic fabricseng
dc.subject.keywordFourier transform infrared spectroscopyeng
dc.subject.keywordPalm oileng
dc.subject.keywordPolyamideseng
dc.subject.keywordRayoneng
dc.subject.keywordScanning electron microscopyeng
dc.subject.keywordTextileseng
dc.subject.keywordX ray spectroscopyeng
dc.subject.keywordChemical bindingeng
dc.subject.keywordNew approacheseng
dc.subject.keywordPhoto-induced decompositioneng
dc.subject.keywordSelf cleaningeng
dc.subject.keywordSelf cleaning textileseng
dc.subject.keywordSolar lighteng
dc.subject.keywordSpectra'seng
dc.subject.keywordSuccinic acidseng
dc.subject.keywordSynthetic fabricseng
dc.subject.keywordX-ray spectroscopyeng
dc.subject.keywordTitanium dioxideeng
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationMejia, M.I., Grupo de Investigaciones Y Mediciones Ambientales, Facultad de Ingeniería, Universidad de Medellín, Carrera 87 No, Medellín, 30-65, Colombia
dc.affiliationMosquera-Pretelt, J., Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
dc.affiliationMarín, J.M., Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
dc.affiliationPulgarín, C., Institute of Chemical Sciences and Engineering, EPFL-SB-ISIC-GPAO, Station 6, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
dc.affiliationKiwi, J., Institute of Chemical Sciences and Engineering, EPFL-SB-ISIC-GPAO, Station 6, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
dc.relation.referencesAbbas, M., Iftikhar, H., Malik, M., Nazir, A., Surface coatings of TiO2 nanoparticles onto the designed fabrics for enhanced self-cleaning properties (2018) Coatings, 8 (1), p. 35
dc.relation.referencesAhmad, I., Kan, C.W., Visible-light-driven, dye-sensitized TiO2 photo-catalyst for self-cleaning cotton fabrics (2017) Coatings, 7 (11), p. 192
dc.relation.referencesArimi, M.M., Zhang, Y., Geißen, S.U., Color removal of melanoidin-rich industrial effluent by natural manganese oxides (2015) Sep Purif Technol, 150, pp. 286-291
dc.relation.referencesBozzi, A., Yuranova, T., Guasaquillo, I., Laub, D., Kiwi, J., Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation (2005) J Photochem Photobiol A, 174 (2), pp. 156-164
dc.relation.referencesBraham, J.E., Bressani, R., (1979) Coffee pulp: Composition, technology, and utilization: IDRC, , Ottawa, ON, CA
dc.relation.referencesCottrell, R.C., Aspectos nutricionales del aceite de palma (1992) Revista Palmas, 13 (3), pp. 7-46. , (In Spanish
dc.relation.referencesDiaa, M., Hassabo, A.G., Self-cleaning properties of cellulosic fabrics (A Review) (2022) Biointerf Res Appl Chem, 12 (2), pp. 1847-1855
dc.relation.referencesEglītis, R., Gundars, M., Comparison of treatments of a cotton fabric modified with a low-temperature TiO2 coating (2015) Proc Est Acad Sci, 64 (3), pp. 1-9
dc.relation.referencesEl-Naggar, M.E., Shaheen, T.I., Zaghloul, S., El-Rafie, M.H., Hebeish, A., Antibacterial activities and UV protection of the in situ synthesized titanium oxide nanoparticles on cotton fabrics (2016) Ind Eng Chem Res, 55 (10), pp. 2661-2668
dc.relation.referencesFujishima, A., Zhang, X., Titanium dioxide photocatalysis: present situation and future approaches (2006) C R Chim, 9 (5-6), pp. 750-760
dc.relation.referencesGaminian, H., Majid, M., Simultaneous nano TiO2 sensitization, application and stabilization on polyester fabric using madder and NaOH producing enhanced self-cleaning with hydrophilic properties under visible light (2017) J Photochem Photobiol, A, 332, pp. 158-166
dc.relation.referencesGao, S., Jianying, H., Shuhui, L., Hui, L., Feiyang, L., Yuwei, L., Guoqiang, C., Yuekun, L., Facile construction of robust fluorine-free superhydrophobic TiO2@fabrics with excellent anti-fouling, water-oil separation and UV-protective properties (2017) Mater Des, 128, pp. 1-8
dc.relation.referencesGarcía-Pérez, C., Menchaca-Campos, C., García-Sánchez, M.A., Pereyra-Laguna, E., Rodríguez-Pérez, O., Uruchurtu-chavarín, J., Nylon/porphyrin/graphene oxide fiber ternary composite, synthesis and characterization (2017) Open J Compos Mater, 7, pp. 146-165
dc.relation.referencesGautam, B., Yu, H.H., Self-cleaning cotton obtained after grafting thermoresponsive poly (N-vinylcaprolactam) through surface-initiated atom transfer radical polymerization (2020) Polymers, 12 (12), p. 2920
dc.relation.referencesGiagnorio, M., Amelio, A., Grüttner, H., Tiraferri, A., Environmental impacts of detergents and benefits of their recovery in the laundering industry (2017) J Clean Prod, 154, pp. 593-601
dc.relation.referencesGuerrini, L.M., Branciforti, M.C., Canova, T., Suman Bretas, R.E., Electrospinning and characterization of polyamide 66 nanofibers with different molecular weights (2009) Mater Res, 12, pp. 181-190
dc.relation.referencesHaji, A., Ahmad, M.S., Firoozmehr, M., Sayyedeh, E.T., RSM optimized self-cleaning nano-finishing on polyester/wool fabric pretreated with oxygen plasma (2016) J Textile Inst, 107 (8), pp. 985-994
dc.relation.referencesHasan, K.M.F., Wang, H., Mahmud, S., Jahid, M.A., Islam, M., Jin, W., Genyang, C., Colorful and antibacterial nylon fabric via in-situ biosynthesis of chitosan mediated nanosilver (2020) J Market Res, 9 (6), pp. 16135-16145
dc.relation.referencesIbrahim, N.A., Eid, B.M., Emam, E.A.M., An eco-friendly facile approach for imparting multifunctional protection properties to cellulose/wool blends (2022) Polym Bull
dc.relation.referencesIchiura, H., Seike, T., Kozu, A., Acetaldehyde gas removal by a nylon film–TiO2 composite sheet prepared on a paper surface using interfacial polymerization and electrostatic interactions (2020) Chemosphere, 256, p. 127143
dc.relation.referencesJeevithan, E., Bin, B., Yongshi, B., Yu, Z., Qingbo, Z., Wenhui, W., Type II collagen and gelatin from silvertip shark (Carcharhinus albimarginatus) cartilage: isolation, purification, physicochemical and antioxidant properties (2014) Mar Drugs, 12 (7), pp. 3852-3873
dc.relation.referencesJeong, E., Woo, H., Moon, Y., Lee, D.Y., Jung, M., Lee, Y.-S., Bae, J.-S., Self-cleaning polyester fabric prepared with TiOF2 and hexadecyltrimethoxysilane (2021) Polymers, 13 (3), p. 387
dc.relation.referencesKale, B.M., Jakub, W., Jiri, M., Samson, R., Rajesh, M., Karl, I.J., Youjiang, W., Coating of cellulose-TiO2 nanoparticles on cotton fabric for durable photocatalytic self-cleaning and stiffness (2016) Carbohyd Polym, 150, pp. 107-113
dc.relation.referencesKarimi, L., Mirjalili, M., Yazdanshenas, M.E., Nazari, A., Effect of nano TiO2 on self-cleaning property of cross-linking cotton fabric with succinic acid under UV irradiation (2010) Photochem Photobiol, 86 (5), pp. 1030-1037
dc.relation.referencesKhajavi, R., Berendjchi, A., Effect of dicarboxylic acid chain length on the self-cleaning property of nano-TiO2-coated cotton fabrics (2014) ACS Appl Mater Interfaces, 6 (21), pp. 18795-18799
dc.relation.referencesKissa, E., Coffee stain on textiles. Mechanisms of staining and stain removal (1995) J Am Oil Chem Soc, 72 (7), pp. 793-797
dc.relation.referencesLee, H.J., Kim, J., Park, C.H., Fabrication of self-cleaning textiles by TiO2-carbon nanotube treatment (2014) Text Res J, 84 (3), pp. 267-278
dc.relation.referencesLi, Z., Yongchun, D., Bing, L., Peng, W., Zhenlei, C., Liran, B., Creation of self-cleaning polyester fabric with TiO2 nanoparticles via a simple exhaustion process: conditions optimization and stain decomposition pathway (2018) Mater Des, 140, pp. 366-375
dc.relation.referencesLiu, S., Qian, Z., Zhangjie, X., Shang, Y., Hongling, L., Surface modification of TiO2/SiO2 composite hydrosol stabilized with polycarboxylic acid on Kroy-process wool fabric (2017) J Adhes Sci Technol, 31 (11), pp. 1209-1228
dc.relation.referencesMarfil, P.H.M., Vasconcelos, F.H.T., Pontieri, M.H., Telis, V., Development and validation of analytical method for palm oil determination in microcapsules produced by complex coacervation (2016) Quim Nova, 39 (1), pp. 94-99
dc.relation.referencesMeilert, K.T., Laub, D., Kiwi, J., Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers (2005) J Mol Catal a Chem, 237 (1-2), pp. 101-108
dc.relation.referencesMejía, M.I., Marín, J.M., Restrepo, G., Pulgarín, C., Mielczarski, E., Mielczarski, J., Arroyo, Y., Kiwi, J., Self-cleaning modified TiO2-cotton pretreated by UVC-light (185 nm) and RF-plasma in vacuum and also under atmospheric pressure (2009) Appl Catal B, 91 (1-2), pp. 481-488
dc.relation.referencesMejia, M.I., Marin, J.M., Restrepo, G., Pulgarin, C., Mielczarski, E., Mielczarski, J., Stolitchnov, I., Kiwi, J., Innovative UVC light (185 nm) and radio-frequency-plasma pretreatment of nylon surfaces at atmospheric pressure and their implications in photocatalytic processes (2009) ACS Appl Mater Interfaces, 1 (10), pp. 2190-2198
dc.relation.referencesMihailović, D., Šaponjić, Z., Radoičić, M., Radetić, T., Jovančić, P., Nedeljković, J., Radetić, M., Functionalization of polyester fabrics with alginates and TiO2 nanoparticles (2010) Carbohyd Polym, 79 (3), pp. 526-532
dc.relation.referencesMontazer, M., Pakdel, E., Self-cleaning and color reduction in wool fabric by nano titanium dioxide (2011) J Text Inst, 102 (4), pp. 343-352
dc.relation.referencesMontazer, M., Seifollahzadeh, S., Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreatment (2011) Photochem Photobiol, 87 (4), pp. 877-883
dc.relation.referencesMontazer, M., Seifollahzadeh, S., Pretreatment of wool/polyester blended fabrics to enhance titanium dioxide nanoparticle adsorption and self-cleaning properties (2011) Color Technol, 127 (5), pp. 322-327
dc.relation.referencesNaebe, M., Haque, A.N.M.A., Haji, A., Plasma-assisted antimicrobial finishing of textiles: a review (2021) Engineering
dc.relation.referencesNagendran, B., Unnithan, U.R., Choo, Y.M., Kalyana, S., Characteristics of red palm oil, a carotene- and vitamin E-rich refined oil for food uses (2000) Food Nutr Bull, 21 (2), pp. 189-194
dc.relation.referencesNoman, M.T., Wiener, J., Saskova, J., Ashraf, M.A., Vikova, M., Jamshaid, H., Kejzlar, P., In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method (2018) Ultrason Sonochem, 40, pp. 41-56
dc.relation.referencesPakdel, E., Daoud, W.A., Self-cleaning cotton functionalized with TiO2/SiO2: Focus on the role of silica (2013) J Colloid Interface Sci, 401, pp. 1-7
dc.relation.referencesPakdel, E., Daoud, W.A., Wang, X.G., Self-cleaning and superhydrophilic wool by TiO2/SiO2 nanocomposite (2013) Appl Surf Sci, 275, pp. 397-402
dc.relation.referencesPakdel, E., Daoud, W.A., Sun, L., Wang, X.G., Visible and UV functionality of TiO2 ternary nanocomposites on cotton (2014) Appl Surf Sci, 321, pp. 447-456
dc.relation.referencesPakdel, E., Wang, J., Kashi, S., Sun, L., Wang, X., Advances in photocatalytic self-cleaning, superhydrophobic and electromagnetic interference shielding textile treatments (2020) Adv Coll Interface Sci, 277, p. 102116
dc.relation.referencesPal, S., Mondal, S., Das, A., Modal, D., Panda, B., Maity, J., (2021) Multifuncional textile fabric and their application, 9 (6)
dc.relation.referencesPalamutcu, S., Acar, G., Con, A.H., Gultekin, T., Aktan, B., Selcuk, H., Innovative self-cleaning and antibacterial cotton textile: no water and no detergent for cleaning (2011) Desalin Water Treat, 26 (1-3), pp. 178-184
dc.relation.referencesPant, H.R., Pandeya, D.R., Nam, K.T., Baek, W.I., Hong, S.T., Kim, H.Y., Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles (2011) J Hazard Mater, 189 (1-2), pp. 465-471
dc.relation.referencesPramanik, N.K., Alam, M.S., Khandal, R.K., Electron beam irradiation of nylon 66: characterization by IR spectroscopy and viscosity studies (2015) Int J Innov Res Sci Eng Technol, 4, pp. 18547-18555
dc.relation.referencesQi, K.H., Xin, J.H., Room-temperature synthesis of single-phase anatase TiO2 by aging and its self-cleaning properties (2010) ACS Appl Mater Interfaces, 2 (12), pp. 3479-3485
dc.relation.referencesRadetic, M., Functionalization of textile materials with TiO2 nanoparticles (2013) J Photochem Photobiol C-Photochem Rev, 16, pp. 62-76
dc.relation.referencesSarwar, N., Bin Humayoun, U., Kumar, M., Nawaz, A., Zafar, M.S., Rasool, U., Kim, Y.H., Yoon, D.H., A bio based immobilizing matrix for transition metal oxides (TMO) crosslinked cotton: a facile and green processing for photocatalytic self-cleaning and multifunctional textile (2022) Mater Lett, 309, p. 131338
dc.relation.referencesSelishchev, D.S., Karaseva, I.P., Uvaev, V.V., Kozlov, D.V., Parmon, V.N., Effect of preparation method of functionalized textile materials on their photocatalytic activity and stability under UV irradiation (2013) Chem Eng J, 224, pp. 114-120
dc.relation.referencesShirgholami, M.A., Karimi, L., Mirjalili, M., Multifunctional modification of wool fabric using graphene/TiO2 nanocomposite (2016) Fibers and Polym, 17 (2), pp. 220-228
dc.relation.referencesSivakumar, A., Murugan, R., Periyasamy, S., Evaluation of multifunctional properties of polyester/cotton blend treated with unmodified and modified nano-TiO2 particles (2016) Mater Technol, 31 (5), pp. 286-298
dc.relation.referencesSobczyk-Guzenda, A., Szymanowski, H., Jakubowski, W., Blasinska, A., Kowalski, J., Gazicki-Lipman, M., Morphology, photocleaning and water wetting properties of cotton fabrics, modified with titanium dioxide coatings synthesized with plasma enhanced chemical vapor deposition technique (2013) Surf Coat Technol, 217, pp. 51-57
dc.relation.referencesSundaresan, K., Sivakumar, A., Vigneswaran, C., Ramachandran, T., Influence of nano titanium dioxide finish, prepared by sol-gel technique, on the ultraviolet protection, antimicrobial, and self-cleaning characteristics of cotton fabrics (2012) J Ind Text, 41 (3), pp. 259-277
dc.relation.referencesTan, B.H., Gao, B., Guo, J.X., Guo, X.Y., Long, M.C., A comparison of TiO2 coated self-cleaning cotton by the sols from peptizing and hydrothermal routes (2013) Surf Coat Technol, 232, pp. 26-32
dc.relation.referencesTayyar, A.E., Alan, G., Outdoor usage performances of woven fabrics dyed with self-cleaning dyes (2015) J Text Inst, 106 (3), pp. 303-310
dc.relation.referencesWang, J., Zhang, X., Lu, H., Fu, Y., Xu, M., Jiang, X., Wu, J., Superhydrophobic nylon fabric with kaolin coating for oil removal under harsh water environments (2021) Appl Clay Sci, 214
dc.relation.referencesYun, C., Imranul Islam, M., LeHew, M., Kim, J., Assessment of environmental and economic impacts made by the reduced laundering of self-cleaning fabrics (2016) Fibers Polym, 17 (8), pp. 1296-1304
dc.relation.referencesZhou, S., Wang, F., Balachandran, S., Li, G., Zhang, X., Wang, R., Liu, P., Yang, M., Facile fabrication of hybrid PA6-decorated TiO2 fabrics with excellent photocatalytic, anti-bacterial, UV light-shielding, and super hydrophobic properties (2017) RSC Adv, 7 (83), pp. 52375-52381
dc.relation.referencesZohoori, S., Karimi, L., Nazari, A., Photocatalytic self-cleaning synergism optimization of cotton fabric using Nano SrTiO3 and Nano TiO2 (2014) Fibres Text Eastern Eur, 22 (2), pp. 91-95. , COI: 1:CAS:528:DC%2BC2cXovVWmt7k%3D
dc.relation.referencesZohoori, S., Karimi, L., Ayaziyazdi, S., A novel durable photoactive nylon fabric using electrospun nanofibers containing nanophotocatalysts (2014) J Ind Eng Chem, 20 (5), pp. 2934-2938
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem