dc.contributor.author | Hernandez-Leal E.J | |
dc.contributor.author | Duque-Mendez N.D. | |
dc.date.accessioned | 2022-09-14T14:34:17Z | |
dc.date.available | 2022-09-14T14:34:17Z | |
dc.date.created | 2021 | |
dc.identifier.isbn | 9781665423588 | |
dc.identifier.uri | http://hdl.handle.net/11407/7608 | |
dc.description | The use of data analysis techniques in educational contexts supports planning and decision-making. Data mining is an alternative that meets the current needs in data management in this field of study. However, most data mining tools and applications are geared towards general domains; they do not specialize in the problems or data inherent in this particular domain. This article presents an initial proposal for an educational data mining model with a specific domain approach to offer solution mechanisms to particular problems at each stage of the mining process and generic domain models in general. In this model iteration, the problems associated with the data were addressed through transformations from generic to a specific domain. © 2021 IEEE. | eng |
dc.language.iso | spa | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127178428&doi=10.1109%2fLACLO54177.2021.00054&partnerID=40&md5=7189faebe3eee3e5cb086f924c15e157 | |
dc.source | Proceedings - 2021 16th Latin American Conference on Learning Technologies, LACLO 2021 | |
dc.title | Towards the Proposal of a Specific Domain Model for Educational Data Mining: Problem Identification | |
dc.type | Conference Paper | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ingeniería de Sistemas | |
dc.type.spa | Documento de conferencia | |
dc.identifier.doi | 10.1109/LACLO54177.2021.00054 | |
dc.subject.keyword | Data Mining | eng |
dc.subject.keyword | Educational Data | eng |
dc.subject.keyword | Specific Domain | eng |
dc.subject.keyword | Decision making | eng |
dc.subject.keyword | Information management | eng |
dc.subject.keyword | Iterative methods | eng |
dc.subject.keyword | 'current | eng |
dc.subject.keyword | Data analysis techniques | eng |
dc.subject.keyword | Data mining applications | eng |
dc.subject.keyword | Data mining problems | eng |
dc.subject.keyword | Decisions makings | eng |
dc.subject.keyword | Educational context | eng |
dc.subject.keyword | Educational data | eng |
dc.subject.keyword | Problem identification | eng |
dc.subject.keyword | Specific domain | eng |
dc.subject.keyword | Specific domain model | eng |
dc.subject.keyword | Data mining | eng |
dc.relation.citationstartpage | 554 | |
dc.relation.citationendpage | 557 | |
dc.publisher.faculty | Facultad de Ingenierías | |
dc.affiliation | Hernandez-Leal, E.J., Universidad De Medellín, Facultad De Ingenieriás, Medellín, Colombia | |
dc.affiliation | Duque-Mendez, N.D., Universidad Nacional De Colombia, Facultad De Administración, Manizales, Colombia | |
dc.relation.references | Larose, D.T., Larose, C.D., (2014) Discovering Knowledge in Data: An Introduction to Data Mining, , Second. Canada: John Wiley & Sons. Inc | |
dc.relation.references | David, D.J., Hand, J., Mannila, H., Smyth, P., (2001) Principles of Data Mining, , MIT Press | |
dc.relation.references | Romero, C., Ventura, S., Data mining in education (2013) Wiley Interdiscip. Rev. DataMin. Knowl. Discov., 3 (1), pp. 12-27. , Jan | |
dc.relation.references | Scheuer, O., McLaren, B.M., Educational Data Mining (2012) Encyclopedia of the Sciences of Learning, pp. 1075-1079. , Boston, MA: Springer US | |
dc.relation.references | Kosar, T., Comparing general-purpose and domain-specific languages: An empirical study (2010) Comput. Sci. Inf. Syst, 7 (2), pp. 247-264 | |
dc.relation.references | Jimenez Celorrio, S., De La Turbides Rosa, T., Learning-Based Planning (2009) Encyclopedia of Artificial Intelligence, pp. 1024-1028. , Madrid: IGI Global | |
dc.relation.references | Kautz, H., Selman, B., The Role of Domain-Specific Knowledge in the Planning as Satisfiability Framework (1998) American Association for Artificial Intelligence, pp. 181-189. , http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.1259, Accessed Oct 23 2017 | |
dc.relation.references | Hiibscher, R., Puntambekar, S., Nye, A.H., Domain specific interactive data mining (2007) Workshop on Data Mining for User Modeling at the 11th International Conference on User Modeling, pp. 81-90 | |
dc.relation.references | Cao, L., Zhang, C., The Evolution of KDD: Towards Domain-Driven Data Mining (2007) Int. J. Pattern Recognit. Artif. Intel!, 21 (4), pp. 677-692. , Jun | |
dc.relation.references | Cao, L., Domain-Driven Data Mining: Challenges and Prospects (2010) IEEE Trans. Knowl. Data Eng., 22 (6), pp. 755-769. , Jun | |
dc.relation.references | Che, D., Safran, M., Peng, Z., From Big Data to Big Data Mining: Challenges, Issues, and Opportunities (2013) Database Systems for Advanced Applications: 18th International Conference, DASFAA 2013, International Workshops: BDMA, SNSM, SeCoP, pp. 1-15. , Wuhan, China, April 22-25, 2013. Proceedings, B. Hong, X. Meng, L. Chen, W. Winiwarter, and W. Song, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg | |
dc.relation.references | Varde, A.S., Tatti, N., A Panorama of Imminent Doctoral Research in Data Mining (2014) ACM SIGMOD Rec, 43 (3), pp. 71-74. , Dec | |
dc.relation.references | Begum, S.H., Data Mining Tools and Trends-An Overview (2013) Int. J. Emerg. Res. Manag. &Technology, pp. 6-12 | |
dc.relation.references | Dsilva, C.J., Talmon, R., Gear, C.W., Coifman, R.R., Kevrekidis, I.G., Data-Driven Reduction for Multiscale Stochastic Dynamical Systems (2015) Appl. Dyn. Syst., Jan., , http://arxiv.org/abs/1501.05195, Accessed: Nov. 16 2017 | |
dc.relation.references | Bermanis, A., Averbuh, A., Coifman, R., Multiscale data sampling and function extension (2013) Appl. Comput. Harmon. Anal., 34 (1), pp. 15-29. , Jan | |
dc.relation.references | Chen, G., Iwen, M., Chin, S., Maggioni, M., A fast multiscale framework for data in high-dimensions: Measure estimation, anomaly detection, and compressive measurements (2012) Visual Communications and Image Processing, pp. 1-6. , Nov | |
dc.relation.references | DeFreitas, K., Bernard, M., A Framework for Flexible Educational Data Mining (2014) Proc. Int. Conf. DataMin. | |
dc.relation.references | De Neto Almeida, F.A., Castro, A., A reference architecture for educational data mining (2017) Proceedings-Frontiers in Education Conference, FIE, 2017, pp. 1-8. , Dec.-October | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/other | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |
dc.relation.ispartofconference | 6th Latin American Conference on Learning Technologies, LACLO 2021 | |