Show simple item record

dc.contributor.authorHenao M.V
dc.contributor.authorMarín L.M.G
dc.contributor.authorVillegas H.H.J.
dc.descriptionThe Petitions, Complaints, Claims and Suggestions (PCCS) systems are mechanisms that clients or users use to publicize the perception and/or conformity with respect to a good or service. However, when a person or entity makes false claims and therefore misleading claims to obtain compensation or benefits to which they are not entitled, it is known as fraud. This work aims to review and investigate the documentary status of investigations carried out with reference to the subject. The analysis methodology is based on the collection of scientific information that has been published in the period 2015-2020. A search equation is proposed, 5 research questions and in a process of several phases, 17 relevant documents were selected. © 2022, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved.eng
dc.publisherAssociacao Iberica de Sistemas e Tecnologias de Informacao
dc.sourceRISTI - Revista Iberica de Sistemas e Tecnologias de Informacao
dc.titleTruth Discovery for False Claims Detection: A Systematic Literature Review [Descubrimiento de la verdad para la detección de reclamaciones fraudulentas o falsas afirmaciones: Una revisión sistemática de literatura]
dc.publisher.programIngeniería de Sistemas
dc.publisher.programCiencias Básicas
dc.subject.keywordAbusive claimseng
dc.subject.keywordFalse claimseng
dc.subject.keywordFraud detectioneng
dc.subject.keywordTruth discoveryeng
dc.publisher.facultyFacultad de Ingenierías
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationHenao, M.V., Modelación y Ciencia Computacional, Universidad de Medellín, Antioquia, Colombia
dc.affiliationMarín, L.M.G., Facultad de Ingenierías, Universidad de Medellín, Antioquia, Colombia
dc.affiliationVillegas, H.H.J., Facultad de Ciencias Básicas, Universidad de Medellín, Antioquia, Colombia
dc.relation.referencesAlsmirat, M., (2020), p. 279. , Institute of Electrical and Electronics Engineers. French Section, & Institute of Electrical and Electronics Engineers. 2020 Seventh International Conference on Software Defined Systems (SDS): Paris, France. April 20-23, 2020
dc.relation.referencesBauder, R. A., Khoshgoftaar, T. M., A novel method for fraudulent medicare claims detection from expected payment deviations (2016) Proceedings-2016 IEEE 17th International Conference on Information Reuse and Integration, IRI 2016, pp. 11-19. ,
dc.relation.referencesBauder, R. A., Khoshgoftaar, T. M., A probabilistic programming approach for outlier detection in healthcare claims (2017) Proceedings-2016 15th IEEE International Conference on Machine Learning and Applications, ICMLA 2016, pp. 347-354. ,
dc.relation.referencesBauder, R. A., Khoshgoftaar, T. M., Medicare fraud detection using machine learning methods (2017) Proceedings-16th IEEE International Conference on Machine Learning and Applications, ICMLA 2017, pp. 858-865. ,, 2017-Decem
dc.relation.referencesBauder, R. A., Khoshgoftaar, T. M., Hasanin, T., Data sampling approaches with severely imbalanced big data for medicare fraud detection (2018) Proceedings-International Conference on Tools with Artificial Intelligence, ICTAI, pp. 137-142. ,, 2018-Novem
dc.relation.referencesConstitución Política de Colombia [Const]. Art. 23. Julio 7 de 1991 (Colombia), , 2da Ed. Editorial Legis
dc.relation.referencesDhieb, N., Ghazzai, H., Besbes, H., Massoud, Y., 2014 IEEE International Conference on Vehicular Electronics and Safety, ICVES 2014 (2015) 2014 IEEE International Conference on Vehicular Electronics and Safety, ICVES 2014, ,, 0–4
dc.relation.referencesHuang, C., Wang, D., Spatial-Temporal Aware Truth Finding in Big Data Social Sensing Applications (2015) Proceedings-14th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2015, 2, pp. 72-79. ,
dc.relation.referencesHuang, C., Wang, D., Topic-Aware Social Sensing with Arbitrary Source Dependency Graphs (2016) 2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN 2016-Proceedings, ,
dc.relation.referencesHuang, C., Wang, D., Chawla, N., Towards time-sensitive truth discovery in social sensing applications (2015) Proceedings-2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems, MASS 2015, pp. 154-162. ,
dc.relation.referencesKareem, S., Ahmad, R. B., Sarlan, A. B., Framework for the identification of fraudulent health insurance claims using association rule mining (2018) 2017 IEEE Conference on Big Data and Analytics, ICBDA 2017, pp. 99-104. ,, 2018-Janua
dc.relation.referencesMarshall, J., Syed, M., Wang, D., Hardness-aware truth discovery in social sensing applications (2016) Proceedings-12th Annual International Conference on Distributed Computing in Sensor Systems, DCOSS 2016, pp. 143-152. ,
dc.relation.referencesMarshall, J., Wang, D., Towards Emotional-Aware Truth Discovery in Social Sensing Applications (2016) 2016 IEEE International Conference on Smart Computing, SMARTCOMP 2016, ,
dc.relation.referencesPérez, J., (2012) Revisión Sistemática de Literatura en Ingeniería, , (Sello Editorial Universidad de Antioquia, dic. 2012, ISBN: 978-958-714-543-4)
dc.relation.referencesPérez, J., (2019) Revisión sistemática de literatura en Ingeniería Ampliada y actualizada, , Segunda Edición, April, 0–183
dc.relation.referencesRawte, V., Anuradha, G., Fraud detection in health insurance using data mining techniques (2015) Proceedings-2015 International Conference on Communication, Information and Computing Technology, ICCICT 2015, pp. 14-18. ,
dc.relation.referencesRoy, R., George, K. T., Detecting insurance claims fraud using machine learning techniques (2017) Proceedings of IEEE International Conference on Circuit, Power and Computing Technologies, ICCPCT 2017, ,
dc.relation.referencesShiralkar, P., Flammini, A., Menczer, F., Ciampaglia, G. L., Finding streams in knowledge graphs to support fact checking (2017) Proceedings-IEEE International Conference on Data Mining, ICDM, pp. 859-864. ,, 2017-Novem
dc.relation.referencesVerma, A., Taneja, A., Arora, A., Fraud detection and frequent pattern matching in insurance claims using data mining techniques (2018) 2017 10th International Conference on Contemporary Computing, IC3 2017, pp. 1-7. ,, 2018-Janua(August)
dc.relation.referencesZhang, D., Wang, D., Vance, N., Zhang, Y., Mike, S., On Scalable and Robust Truth Discovery in Big Data Social Media Sensing Applications (2018) IEEE Transactions on Big Data, 5 (2), pp. 195-208. ,
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instnameinstname:Universidad de Medellín

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record