Mostrar el registro sencillo del ítem

dc.contributor.authorLeón A.M
dc.contributor.authorVelásquez É.A
dc.contributor.authorCaro-Lopera F
dc.contributor.authorMejía-López J.
dc.date.accessioned2022-09-14T14:34:18Z
dc.date.available2022-09-14T14:34:18Z
dc.date.created2022
dc.identifier.issn25130390
dc.identifier.urihttp://hdl.handle.net/11407/7610
dc.descriptionCommensurable twisted bilayers can drastically change the magnetic properties of chromium trihalide layered compounds, which opens novel opportunities for tuning magnetic states through layer rotations. Here, a mathematical approach to obtain moiré patterns in twisted hexagonal bilayers by performing a certain commensurable rotation θ over one layer is presented. To test the approach, moiré structures with (Formula presented.) and 32.20° in the phases R (Formula presented.) and C2/m of CrI3 are obtained via the related methodology. For comparison purposes, a non-shifted CrI3 structure is also considered. Electronic and magnetic properties of the so-obtained systems are computed by ab initio methodologies. Results show the presence of rotation-angle-dependent magnetic configurations and steep modifications of the dispersion bands due to variations in the nearest and next nearest distances among layers of Cr atoms. Modifications obtained from these commensurable rotations are discussed on the basis of competition among different energy contributions due to changes in the atomic neighborhood. © 2022 Wiley-VCH GmbHeng
dc.language.isoeng
dc.publisherJohn Wiley and Sons Inc
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85123493080&doi=10.1002%2fadts.202100307&partnerID=40&md5=aef9d0222b6736e4cf389137be706286
dc.sourceAdvanced Theory and Simulations
dc.titleTuning Magnetic Order in CrI3 Bilayers via Moiré Patterns
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1002/adts.202100307
dc.subject.keywordMagnetic propertieseng
dc.subject.keywordMagnetismeng
dc.subject.keywordMoire fringeseng
dc.subject.keywordRotationeng
dc.subject.keywordTuningeng
dc.subject.keywordAb initio methodologyeng
dc.subject.keywordBi-layereng
dc.subject.keywordElectronic and magnetic propertieseng
dc.subject.keywordLayered compoundeng
dc.subject.keywordMagnetic orderseng
dc.subject.keywordMagnetic stateeng
dc.subject.keywordMathematical approacheng
dc.subject.keywordMoire patterneng
dc.subject.keywordTrihalideseng
dc.subject.keywordTwisted bilayerseng
dc.subject.keywordChromium compoundseng
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationLeón, A.M., Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40 Dresden, Dresden, 01187, Germany
dc.affiliationVelásquez, É.A., Grupo MATBIOM, Facultad de Ciencias Básicas, Universidad de Medellín, Cra. 87 30-65, Medellín, Colombia
dc.affiliationCaro-Lopera, F., Facultad de Ciencias Básicas, Universidad de Medellín, Cra. 87 30-65, Medellín, Colombia
dc.affiliationMejía-López, J., Centro de Investigación en Nanotecnología y Materiales Avanzados, Facultad de Física, Pontificia Universidad Católica de Chile, CEDENNA, casilla 306, Santiago, 22, Chile
dc.relation.referencesCao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Kaxiras, E., Jarillo-Herrero, P., (2018) Nature, 556, p. 43
dc.relation.referencesYankowitz, M., Chen, S., Polshyn, H., Zhang, Y., Watanabe, K., Taniguchi, T., Graf, D., Dean, C.R., (2019) Science, 363, p. 1059
dc.relation.referencesSharpe, A.L., Fox, E.J., Barnard, A.W., Finney, J., Watanabe, K., Taniguchi, T., Kastner, M., Goldhaber-Gordon, D., (2019) Science, 365, p. 605
dc.relation.referencesKerelsky, A., McGilly, L.J., Kennes, D.M., Xian, L., Yankowitz, M., Chen, S., Watanabe, K., Pasupathy, A.N., (2019) Nature, 572, p. 95
dc.relation.referencesCao, Y., Fatemi, V., Demir, A., Fang, S., Tomarken, S.L., Luo, J.Y., Sanchez-Yamagishi, J.D., Jarillo-Herrero, P., (2018) Nature, 556, p. 80
dc.relation.referencesXie, M., MacDonald, A.H., (2020) Phys. Rev. Lett., 124
dc.relation.referencesMishchenko, A., Tu, J., Cao, Y., Gorbachev, R.V., Wallbank, J., Greenaway, M., Morozov, V., Novoselov, K.S., (2014) Nat. Nanotechnol., 9, p. 808
dc.relation.referencesLin, M.-L., Tan, Q.-H., Wu, J.-B., Chen, X.-S., Wang, J.-H., Pan, Y.-H., Zhang, X., Tan, P.-H., (2018) Acs Nano, 12, p. 8770
dc.relation.referencesSeyler, K.L., Rivera, P., Yu, H., Wilson, N.P., Ray, E.L., Mandrus, D.G., Yan, J., Xu, X., (2019) Nature, 567, p. 66
dc.relation.referencesWang, L., Shih, E.-M., Ghiotto, A., Xian, L., Rhodes, D.A., Tan, C., Claassen, M., Dean, C.R., (2020) Nat. Mater., 19, p. 861
dc.relation.referencesShallcross, S., Sharma, S., Pankratov, O.A., (2008) Phys. Rev. Lett., 101
dc.relation.referencesShallcross, S., Sharma, S., Kandelaki, E., Pankratov, O., (2010) Phys. Rev. B, 81
dc.relation.referencesHermann, K., (2012) J. Phys.: Condens. Matter, 24
dc.relation.referencesGómez-Urrea, H., Ospina-Medina, M., Correa-Abad, J., Mora-Ramos, M., Caro-Lopera, F., (2020) Opt. Commun., 459
dc.relation.referencesGómez-Urrea, H., Bareño-Silva, J., Caro-Lopera, F., Mora-Ramos, M., (2020) Photon. Nanostruct.-Fundam. Appl., 42
dc.relation.referencesTiutiunnyk, A., Duque, C., Caro-Lopera, F., Mora-Ramos, M., Correa, J., (2019) Phys. E, 112, p. 36
dc.relation.referencesJiang, P., Wang, C., Chen, D., Zhong, Z., Yuan, Z., Lu, Z.-Y., Ji, W., (2019) Phys. Rev. B, 99
dc.relation.referencesGudelli, V.K., Guo, G.-Y., (2019) New J. Phys., 21
dc.relation.referencesLado, J.L., Fernández-Rossier, J., (2017) 2D Mater., 4
dc.relation.referencesLeón, A., González, J., Mejía-López, J., de Lima, F.C., Morell, E.S., (2020) 2D Mater., 7
dc.relation.referencesJang, S.W., Jeong, M.Y., Yoon, H., Ryee, S., Han, M.J., (2019) Phys. Rev. Mater., 3
dc.relation.referencesSivadas, N., Okamoto, S., Xu, X., Fennie, C.J., Xiao, D., (2018) Nano Lett., 18, p. 7658
dc.relation.referencesXiao, F., Chen, K., Tong, Q., (2021) Phys. Rev. Res., 3
dc.relation.referencesXhie, J., Sattler, K., Ge, M., Venkateswaran, N., (1993) Phys. Rev. B, 47
dc.relation.referencesPong, W.-T., Durkan, C., (2005) J. Phys. D: Appl. Phys., 38, p. 21
dc.relation.referencesTrambly de Laissardière, G., Mayou, D., Magaud, L., (2010) Nano Lett., 10, p. 804
dc.relation.referencesKittel, C., (2005), Introduction to Solid State Physics, 8th ed. John Wiley & Sons Inc., New York
dc.relation.referencesSoriano, D., Cardoso, C., Fernández-Rossier, J., (2019) Solid State Commun., 299
dc.relation.referencesMorell, E.S., León, A., Miwa, R.H., Vargas, P., (2019) 2D Materials, 6
dc.relation.referencesNam, N.N., Koshino, M., (2017) Phys. Rev. B, 96
dc.relation.referencesCantele, G., Alfè, D., Conte, F., Cataudella, V., Ninno, D., Lucignano, P., (2020) Phys. Rev. Res., 2
dc.relation.referencesYananose, K., Cantele, G., Lucignano, P., Cheong, S.-W., Yu, J., Stroppa, A., (2021), arXiv preprint
dc.relation.referencesLucignano, P., Alfè, D., Cataudella, V., Ninno, D., Cantele, G., (2019) Phys. Rev. B, 99
dc.relation.referencesKoshino, M., Son, Y.-W., (2019) Phys. Rev. B, 100
dc.relation.referencesConte, F., Ninno, D., Cantele, G., (2019) Phys. Rev. B, 99
dc.relation.referencesNaik, M.H., Kundu, S., Maity, I., Jain, M., (2020) Phys. Rev. B, 102
dc.relation.referencesMannaï, M., Haddad, S., (2021) Phys. Rev. B, 103
dc.relation.referencesAngeli, M., MacDonald, A.H., (2021) Proc. Natl. Acad. Sci. U. S. A., 118, p. 10
dc.relation.referencesKresse, G., Furthmüller, J., (1996) Comput. Mater. Sci., 6, p. 15
dc.relation.referencesHaddadi, F., Wu, Q., Kruchkov, A.J., Yazyev, O.V., (2020) Nano Lett., 20, p. 2410
dc.relation.referencesNaik, M.H., Jain, M., (2018) Phys. Rev. Lett., 121
dc.relation.referencesMa, Z., Li, S., Xiao, M.-M., Zheng, Y.-W., Lu, M., Liu, H., Gao, J.-H., Xie, X., (2020), arXiv preprint
dc.relation.referencesArroyo-Gascón, O., Fernández-Perea, R., Suárez Morell, E., Cabrillo, C., Chico, L., (2020) Nano Lett., 20, p. 7588
dc.relation.referencesParr, R.G., (1980) Horizons of Quantum Chemistry, pp. 5-15. , Springer, New York
dc.relation.referencesKohn, W., Sham, L.J., (1965) Phys. Rev., 140
dc.relation.referencesPerdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K., (2008) Phys. Rev. Lett., 100
dc.relation.referencesKlimeš, J., Bowler, D.R., Michaelides, A., (2011) Phys. Rev. B, 83
dc.relation.referencesGrimme, S., (2006) J. Comput. Chem., 27, p. 1787
dc.relation.referencesXu, Y., Ray, A., Shao, Y.-T., Jiang, S., Weber, D., Goldberger, J.E., Watanabe, K., Shan, J., (2021), arXiv preprint
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem