Mostrar el registro sencillo del ítem

dc.contributor.authorNúñez-Zarur F
dc.contributor.authorComas-Vives A.
dc.date.accessioned2022-09-14T14:34:18Z
dc.date.available2022-09-14T14:34:18Z
dc.date.created2022
dc.identifier.issn19327447
dc.identifier.urihttp://hdl.handle.net/11407/7612
dc.descriptionIn this work, we computationally analyze the effect of the strain at the Cr(III) sites of a Cr(III)/SiO2 catalyst in the ethylene polymerization initiation considering two possible pathways: ethylene C–H activation and ethylene insertion into the Cr–O bond. We use the activation strain model (ASM), which dissects the activation energy of a reaction into strain and interaction energies, on a series of Cr(III) clusters with different sizes of the Si–O–Si rings. Our results indicate that more strained Cr(III) sites are more active than less strained ones and that the ethylene insertion into the Cr–O bond is more favorable than C–H bond activation for all sites. The ASM analysis reveals that the activation energies of both initiation mechanisms are dually controlled by interaction and strain energies. However, the comparison of the two mechanisms indicates that the preference for the ethylene insertion pathway is due to lower distortion of the ethylene fragment at the transition states, which is ultimately controlled by one intermolecular and one intramolecular interaction between the activated ethylene and the Cr(III) site fragments. © 2021 American Chemical Societyeng
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85122680473&doi=10.1021%2facs.jpcc.1c09753&partnerID=40&md5=5c78147761e822f789ba6a150a134583
dc.sourceJournal of Physical Chemistry C
dc.titleUnderstanding the Olefin Polymerization Initiation Mechanism by Cr(III)/SiO2 Using the Activation Strain Model
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1021/acs.jpcc.1c09753
dc.subject.keywordActivation analysiseng
dc.subject.keywordActivation energyeng
dc.subject.keywordChromium compoundseng
dc.subject.keywordPolymerizationeng
dc.subject.keywordSiliconeng
dc.subject.keywordSilicon compoundseng
dc.subject.keywordActivation strain modeleng
dc.subject.keywordBond activationeng
dc.subject.keywordC-H bondeng
dc.subject.keywordDifferent sizeseng
dc.subject.keywordEthylene polymerizationeng
dc.subject.keywordInitiation mechanismeng
dc.subject.keywordInteraction energieseng
dc.subject.keywordModeling analyzeseng
dc.subject.keywordOlefins polymerizationseng
dc.subject.keyword]+ catalysteng
dc.subject.keywordEthyleneeng
dc.relation.citationvolume126
dc.relation.citationissue1
dc.relation.citationstartpage296
dc.relation.citationendpage308
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationNúñez-Zarur, F., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, 050026, Colombia
dc.affiliationComas-Vives, A., Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Catalonia08193, Spain
dc.relation.referencesTielens, F., Gierada, M., Handzlik, J., Calatayud, M., Characterization of Amorphous Silica Based Catalysts Using DFT Computational Methods (2020) Catal. Today, 354, pp. 3-18
dc.relation.referencesCopéret, C., Chabanas, M., Petroff Saint-Arroman, R., Basset, J.-M., Homogeneous and Heterogeneous Catalysis: Bridging the Gap Through Surface Organometallic Chemistry (2003) Angew. Chem., Int. Ed., 42 (2), pp. 156-181
dc.relation.referencesBlanc, F., Basset, J.-M., Copéret, C., Sinha, A., Tonzetich, Z.J., Schrock, R.R., Solans-Monfort, X., Lesage, A., Dynamics of Silica-Supported Catalysts Determined by Combining Solid-State NMR Spectroscopy and DFT Calculations (2008) J. Am. Chem. Soc., 130, pp. 5886-5900
dc.relation.referencesSoignier, S., Saggio, G., Taoufik, M., Basset, J.-M., Thivolle-Cazat, J., Dynamic Behaviour of Tantalum Hydride Supported on Silica or MCM-41 in the Metathesis of Alkanes (2014) Catal. Sci. Technol., 4, pp. 233-244
dc.relation.referencesPelletier, J.D.A., Basset, J.-M., Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts (2016) Acc. Chem. Res., 49, pp. 664-677
dc.relation.referencesSamantaray, M.K., Pump, E., Bendjeriou-Sedjerari, A., D’Elia, V., Pelletier, J.D.A., Guidotti, M., Psaro, R., Basset, J.-M., Surface Organometallic Chemistry in Heterogeneous Catalysis (2018) Chem. Soc. Rev., 47, pp. 8403-8437
dc.relation.referencesZhuravlev, L.T., The Surface Chemistry of Amorphous Silica. Zhuravlev Model (2000) Colloids Surf., A, 173, pp. 1-38
dc.relation.referencesGroppo, E., Lamberti, C., Bordiga, S., Spoto, G., Zecchina, A., The Structure of Active Centers and the Ethylene Polymerization Mechanism on the Cr/SiO2 Catalyst: A Frontier for the Characterization Methods (2005) Chem. Rev., 105, pp. 115-184
dc.relation.referencesLamberti, C., Groppo, E., Spoto, G., Bordiga, S., Zecchina, A., Infrared Spectroscopy of Transient Surface Species (2007) Adv. Catal., 51, pp. 1-74
dc.relation.referencesLamberti, C., Zecchina, A., Groppo, E., Bordiga, S., Probing the Surfaces of Heterogeneous Catalysts by in Situ IR Spectroscopy (2010) Chem. Soc. Rev., 39, pp. 4951-5001
dc.relation.referencesGroppo, E., Zecchina, A., Barzan, C., Vitillo, J.G., Low Temperature Activation and Reactivity of CO2 Over a Cr(II)-Based Heterogeneous Catalyst: A Spectroscopic Study (2012) Phys. Chem. Chem. Phys., 14, pp. 6538-6543
dc.relation.referencesBordiga, S., Groppo, E., Agostini, G., van Bokhoven, J.A., Lamberti, C., Reactivity of Surface Species in Heterogeneous Catalysts Probed by in Situ X-Ray Absorption Techniques (2013) Chem. Rev., 113, pp. 1736-1850
dc.relation.referencesGroppo, E., Seenivasan, K., Barzan, C., The Potential of Spectroscopic Methods Applied to Heterogeneous Catalysts for Olefin Polymerization (2013) Catal. Sci. Technol., 3, pp. 858-878
dc.relation.referencesWeckhuysen, B.M., Wachs, I.E., Schoonheydt, R.A., Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides (1996) Chem. Rev., 96, pp. 3327-3350
dc.relation.referencesMcDaniel, M.P., Ertl, G., Knözinger, H., Schüth, F., Weitkamp, J., Review of the Phillips Chromium Catalyst for Ethylene Polymerization (2008) Handbook of Heterogeneous Catalysis, pp. 3733-3792. , Eds
dc.relation.referencesMcDaniel, M.P., Bruce, C.G., Helmut, K., A Review of the Phillips Supported Chromium Catalyst and Its Commercial Use for Ethylene Polymerization (2010) Advances in Catalysis, 53, pp. 123-606. , Academic Press;
dc.relation.referencesMcDaniel, M.P., Hoff, R., A Review of the Phillips Chromium Catalyst for Ethylene Polymerization (2018) Handbook of Transition Metal Polymerization Catalysts, pp. 401-571. , Ed
dc.relation.referencesGroppo, E., Martino, G.A., Piovano, A., Barzan, C., The Active Sites in the Phillips Catalysts: Origins of a Lively Debate and a Vision for the Future (2018) ACS Catal., 8, pp. 10846-10863
dc.relation.referencesGroppo, E., Lamberti, C., Cesano, F., Zecchina, A., On the Fraction of CrII Sites Involved in the C2H4 Polymerization on the Cr/SiO2 Phillips Catalyst: A Quantification by FTIR Spectroscopy (2006) Phys. Chem. Chem. Phys., 8, pp. 2453-2456
dc.relation.referencesGroppo, E., Estephane, J., Lamberti, C., Spoto, G., Zecchina, A., Ethylene, Propylene and Ethylene Oxide in Situ Polymerization on the Cr(II)/SiO2 System: A Temperature- And Pressure-Dependent Investigation (2007) Catal. Today, 126, pp. 228-234
dc.relation.referencesGianolio, D., Groppo, E., Vitillo, J.G., Damin, A., Bordiga, S., Zecchina, A., Lamberti, C., Direct Evidence of Adsorption Induced Cr(II) Mobility on the SiO2 Surface Upon Complexation by CO (2010) Chem. Commun., 46, pp. 976-978
dc.relation.referencesGroppo, E., Damin, A., Otero Arean, C., Zecchina, A., Enhancing the Initial Rate of Polymerisation of the Reduced Phillips Catalyst by One Order of Magnitude (2011) Chem.─Eur. J., 17, pp. 11110-11114
dc.relation.referencesConley, M.P., Delley, M.F., Siddiqi, G., Lapadula, G., Norsic, S., Monteil, V., Safonova, O.V., Copéret, C., Polymerization of Ethylene by Silica-Supported Dinuclear CrIII Sites through an Initiation Step Involving C-H Bond Activation (2014) Angew. Chem., Int. Ed., 53, pp. 1872-1876
dc.relation.referencesDelley, M.F., Nunez-Zarur, F., Conley, M.P., Comas-Vives, A., Siddiqi, G., Norsic, S., Monteil, V., Coperet, C., Proton Transfers Are Key Elementary Steps in Ethylene Polymerization on Isolated Chromium(III) Silicates (2014) Proc. Natl. Acad. Sci. U.S.A., 111, pp. 11624-11629
dc.relation.referencesDelley, M.F., Conley, M.P., Copéret, C., Polymerization on CO-Reduced Phillips Catalyst Initiates Through the C-H bond Activation of Ethylene on Cr-O Sites (2014) Catal. Lett., 144, pp. 805-808
dc.relation.referencesFloryan, L., Borosy, A.P., Núñez-Zarur, F., Comas-Vives, A., Copéret, C., Strain Effect and Dual Initiation Pathway in CrIII/SiO2 Polymerization Catalysts From Amorphous Periodic Models (2017) J. Catal., 346, pp. 50-56
dc.relation.referencesFong, A., Vandervelden, C., Scott, S.L., Peters, B., Computational Support for Phillips Catalyst Initiation via Cr–C Bond Homolysis in a Chromacyclopentane Site (2018) ACS Catal., 8, pp. 1728-1733
dc.relation.referencesFong, A., Yuan, Y., Ivry, S.L., Scott, S.L., Peters, B., Computational Kinetic Discrimination of Ethylene Polymerization Mechanisms for the Phillips (Cr/SiO2) Catalyst (2015) ACS Catal., 5, pp. 3360-3374
dc.relation.referencesFong, A., Peters, B., Scott, S.L., One-Electron-Redox Activation of the Reduced Phillips Polymerization Catalyst, via Alkylchromium(IV) Homolysis: A Computational Assessment (2016) ACS Catal., 6, pp. 6073-6085
dc.relation.referencesDamin, A., Vitillo, J.G., Ricchiardi, G., Bordiga, S., Lamberti, C., Groppo, E., Zecchina, A., Modeling CO and N2 Adsorption at Cr Surface Species of Phillips Catalyst by Hybrid Density Functionals: Effect of Hartree-Fock Exchange Percentage (2009) J. Phys. Chem. A, 113, pp. 14261-14269
dc.relation.referencesEspelid, Ø., Børve, K.J., Theoretical Models of Ethylene Polymerization Over a Mononuclear Chromium(II)/Silica Site (2000) J. Catal., 195, pp. 125-139
dc.relation.referencesEspelid, Ø., Børve, K.J., Theoretical Analysis of d-d Transitions for the Reduced Cr/Silica System (2001) Catal. Lett., 75, pp. 49-54
dc.relation.referencesEspelid, Ø., Børve, K.J., Molecular-Level Insight Into Cr/Silica Phillips-Type Catalysts: Polymerization-Active Dinuclear Chromium Sites (2002) J. Catal., 206, pp. 331-338
dc.relation.referencesEspelid, Ø., Børve, K.J., Molecular-Level Insight Into Cr/Silica Phillips-Type Catalysts: Polymerization-Active Mononuclear Chromium Sites (2002) J. Catal., 205, pp. 366-374
dc.relation.referencesEspelid, Ø., Børve, K.J., Theoretical Analysis of Co Adsorption on the Reduced Cr/Silica System (2002) J. Catal., 205, pp. 177-190
dc.relation.referencesGierada, M., Handzlik, J., Computational Insights Into Reduction of the Phillips CrOx/SiO2 Catalyst by Ethylene and CO (2018) J. Catal., 359, pp. 261-271
dc.relation.referencesZhong, L., Liu, Z., Cheng, R., Tang, S., Qiu, P., He, X., Terano, M., Liu, B., Active Site Transformation During the Induction Period of Ethylene Polymerization over the Phillips CrOx/SiO2 Catalyst (2012) ChemCatChem, 4, pp. 872-881
dc.relation.referencesBrown, C., Krzystek, J., Achey, R., Lita, A., Fu, R., Meulenberg, R.W., Polinski, M., van de Burgt, L.J., Mechanism of Initiation in the Phillips Ethylene Polymerization Catalyst: Redox Processes Leading to the Active Site (2015) ACS Catal., 5, pp. 5574-5583
dc.relation.referencesDemmelmaier, C.A., White, R.E., van Bokhoven, J.A., Scott, S.L., Evidence for a Chromasiloxane Ring Size Effect in Phillips (Cr/SiO2) Polymerization Catalysts (2009) J. Catal., 262, pp. 44-56
dc.relation.referencesBudnyk, A., Damin, A., Groppo, E., Zecchina, A., Bordiga, S., Effect of Surface Hydroxylation on the Catalytic Activity of a Cr(II)/SiO2 Model System of Phillips Catalyst (2015) J. Catal., 324, pp. 79-87
dc.relation.referencesAmakawa, K., Sun, L., Guo, C., Hävecker, M., Kube, P., Wachs, I.E., Lwin, S., Hermann, K., How Strain Affects the Reactivity of Surface Metal Oxide Catalysts (2013) Angew. Chem., Int. Ed., 52, pp. 13553-13557
dc.relation.referencesDas, U., Zhang, G., Hu, B., Hock, A.S., Redfern, P.C., Miller, J.T., Curtiss, L.A., Effect of Siloxane Ring Strain and Cation Charge Density on the Formation of Coordinately Unsaturated Metal Sites on Silica: Insights from Density Functional Theory (DFT) Studies (2015) ACS Catal., 5, pp. 7177-7185
dc.relation.referencesPraveen, C.S., Borosy, A.P., Copéret, C., Comas-Vives, A., Strain in Silica-Supported Ga(III) Sites: Neither Too Much nor Too Little for Propane Dehydrogenation Catalytic Activity (2021) Inorg. Chem., 60, pp. 6865-6874
dc.relation.referencesPraveen, C.S., Comas-Vives, A., Activity Trends in the Propane Dehydrogenation Reaction Catalyzed by MIII Sites on an Amorphous SiO2 Model: A Theoretical Perspective (2021) Top. Catal., , In press
dc.relation.referencesComas-Vives, A., Amorphous SiO2 Surface Models: Energetics of the Dehydroxylation Process, Strain, Ab Initio Atomistic Thermodynamics and IR Spectroscopic Signatures (2016) Phys. Chem. Chem. Phys., 18, pp. 7475-7482
dc.relation.referencesMardirossian, N., Head-Gordon, M., Thirty Years of Density Functional Theory in Computational Chemistry: An Overview and Extensive Assessment of 200 Density Functionals (2017) Mol. Phys., 115, pp. 2315-2372
dc.relation.referencesFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Petersson, G.A., (2009) Gaussian 09, , Revision D1
dc.relation.referencesGaussian Inc Wallingford CT
dc.relation.referencesCramer, C.J., Truhlar, D.G., Density Functional Theory for Transition Metals and Transition Metal Chemistry (2009) Phys. Chem. Chem. Phys., 11, pp. 10757-10816
dc.relation.referencesGrimme, S., Semiempirical Hybrid Density Functional With Perturbative Second-Order Correlation (2006) J. Chem. Phys., 124, p. 034108
dc.relation.referencesGrimme, S., Antony, J., Ehrlich, S., Krieg, H., A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) For the 94 Elements H-Pu (2010) J. Chem. Phys., 132, p. 154104
dc.relation.referencesGrimme, S., Ehrlich, S., Goerigk, L., Effect of the Damping Function in Dispersion Corrected Density Functional Theory (2011) J. Comput. Chem., 32, pp. 1456-1465
dc.relation.referencesHay, P.J., Wadt, W.R., Ab initio Effective Core Potentials for Molecular Calculations - Potentials for K to Au Including the Outermost Core Orbitals (1985) J. Chem. Phys., 82, pp. 299-310
dc.relation.referencesMclean, A.D., Chandler, G.S., Contracted Gaussian-Basis Sets for Molecular Calculations. I. 2nd Row Atoms, Z=11-18 (1980) J. Chem. Phys., 72, pp. 5639-5648
dc.relation.referencesKrishnan, R., Binkley, J.S., Seeger, R., Pople, J.A., Self-Consistent Molecular-Orbital Methods .20. Basis Set for Correlated Wave-Functions (1980) J. Chem. Phys., 72, pp. 650-654
dc.relation.referencesFrancl, M.M., Pietro, W.J., Hehre, W.J., Binkley, J.S., Gordon, M.S., DeFrees, D.J., Pople, J.A., Self-Consistent Molecular Orbital Methods. XXIII. A Polarization-Type Basis Set for Second-Row Elements (1982) J. Chem. Phys., 77, pp. 3654-3665
dc.relation.referencesEhlers, A.W., Böhme, M., Dapprich, S., Gobbi, A., Höllwarth, A., Jonas, V., Köhler, K.F., Frenking, G., A Set of F-Polarization Functions for Pseudo-Potential Basis-Sets of the Transition-Metals Sc-Cu, Y-Ag and La-Au (1993) Chem. Phys. Lett., 208, pp. 111-114
dc.relation.referencesRoy, L.E., Hay, P.J., Martin, R.L., Revised Basis Sets for the LANL Effective Core Potentials (2008) J. Chem. Theory Comput., 4, pp. 1029-1031
dc.relation.referencesClark, T., Chandrasekhar, J., Spitznagel, G.W., Schleyer, P.V.R., Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. III. The 3-21+G Basis Set for First-Row Elements, Li-F (1983) J. Comput. Chem., 4, pp. 294-301
dc.relation.referencesSpitznagel, G.W., Clark, T., von Ragué Schleyer, P., Hehre, W.J., An Evaluation of the Performance of Diffuse Function-Augmented Basis Sets for Second Row Elements, Na-Cl (1987) J. Comput. Chem., 8, pp. 1109-1116
dc.relation.referencesBecke, A.D., Density-Functional Thermochemistry .3. The Role of Exact Exchange (1993) J. Chem. Phys., 98, pp. 5648-5652
dc.relation.referencesLee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density (1988) Phys. Rev. B: Condens. Matter Mater. Phys., 37, pp. 785-789
dc.relation.referencesConley, M.P., Delley, M.F., Núñez-Zarur, F., Comas-Vives, A., Copéret, C., Heterolytic Activation of C-H Bonds on Cr(III)-O Surface Sites Is a Key Step in Catalytic Polymerization of Ethylene and Dehydrogenation of Propane (2015) Inorg. Chem., 54, pp. 5065-5078
dc.relation.referencesBrown, C., Lita, A., Tao, Y., Peek, N., Crosswhite, M., Mileham, M., Krzystek, J., Bindra, J.K., Mechanism of Initiation in the Phillips Ethylene Polymerization Catalyst: Ethylene Activation by Cr(II) and the Structure of the Resulting Active Site (2017) ACS Catal., 7, pp. 7442-7455
dc.relation.referencesde Jong, G.T., Bickelhaupt, F.M., Transition-State Energy and Position Along the Reaction Coordinate in an Extended Activation Strain Model (2007) ChemPhysChem, 8, pp. 1170-1181
dc.relation.referencesvan Zeist, W.-J., Bickelhaupt, F.M., The Activation Strain Model of Chemical Reactivity (2010) Org. Biomol. Chem., 8, pp. 3118-3127
dc.relation.referencesFernández, I., Bickelhaupt, F.M., The Activation Strain Model and Molecular Orbital Theory: Understanding and Designing Chemical Reactions (2014) Chem. Soc. Rev., 43, pp. 4953-4967
dc.relation.referencesWolters, L.P., Bickelhaupt, F.M., The Activation Strain Model and Molecular Orbital Theory (2015) Wiley Interdiscip. Rev.: Comput. Mol. Sci., 5, pp. 324-343
dc.relation.referencesBickelhaupt, F.M., Houk, K.N., Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model (2017) Angew. Chem., Int. Ed., 56, pp. 10070-10086
dc.relation.referencesVermeeren, P., van der Lubbe, S.C.C., Fonseca Guerra, C., Bickelhaupt, F.M., Hamlin, T.A., Understanding Chemical Reactivity Using the Activation Strain Model (2020) Nat. Protoc., 15, pp. 649-667
dc.relation.referencesWeigend, F., Ahlrichs, R., Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy (2005) Phys. Chem. Chem. Phys., 7, pp. 3297-3305
dc.relation.referencesWaterman, R., Sigma-Bond Metathesis: A 30-Year Retrospective (2013) Organometallics, 32, pp. 7249-7263
dc.relation.referencesHamlin, T.A., Levandowski, B.J., Narsaria, A.K., Houk, K.N., Bickelhaupt, F.M., Structural Distortion of Cycloalkynes Influences Cycloaddition Rates both by Strain and Interaction Energies (2019) Chem.─Eur. J., 25, pp. 6342-6348
dc.relation.referencesNarsaria, A.K., Hamlin, T.A., Lammertsma, K., Bickelhaupt, F.M., Dual Activation of Aromatic Diels–Alder Reactions (2019) Chem.─Eur. J., 25, pp. 9902-9912
dc.relation.referencesNúñez-Zarur, F., Comas-Vives, A., The Effect of the Electronic Nature of Spectator Ligands in the C-H Bond Activation of Ethylene by Cr(III) Silicates: An ab initio Study (2015) Chimia, 69, pp. 225-229
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem