Mostrar el registro sencillo del ítem

dc.contributor.authorParedes-Laverde M
dc.contributor.authorSalamanca M
dc.contributor.authorDiaz-Corrales J.D
dc.contributor.authorFlorez E
dc.contributor.authorSilva-Agredo J
dc.contributor.authorTorres-Palma R.A.
dc.date.accessioned2022-09-14T14:34:18Z
dc.date.available2022-09-14T14:34:18Z
dc.date.created2021
dc.identifier.issn22133437
dc.identifier.urihttp://hdl.handle.net/11407/7613
dc.descriptionActivated carbons have been prepared from rice husk (RH) and coffee husk (CH) using ZnCl2 as activating agent. These materials were characterized by thermogravimetric and elemental analysis, infrared spectroscopy (FTIR), the point of zero charge (PZC), scanning electron microscopy (SEM), and nitrogen adsorption. The removal efficiency of the obtained adsorbents was tested using indigo carmine (IC) at different pH, as a model dye, in both distilled water and textile wastewater. The results showed that the dye adsorption on the natural adsorbents and the activated carbons was favorable at acidic pH (3.0). Moreover, the best IC removal in both matrices was reached by the material prepared from CH and activated with ZnCl2 (CH-ZnCl2). This result correlated well with the higher value PZC (7.1), large specific surface area, and porosity characteristics. Additionally, the dye adsorption on the CH-ZnCl2 surface was improved using the smaller particle size and the optimal dose of adsorbent; the adsorptions obtained were much better than those of a commercial activated carbon. Furthermore, the isotherms study showed the adsorption to be monolayer type according to Langmuir and Redlich-Peterson equations. The adsorption kinetics followed a pseudo-second-order kinetic model, and intra-particle diffusion showed that IC adsorption on the surface is faster than inside CH-ZnCl2. The thermodynamic parameters suggest that the IC adsorption is a physical process, which is spontaneous and endothermic. According to density functional theory calculations and experimental FTIR analysis, oxygenated groups and aromatic rings are relevant during the IC adsorption through hydrogen bonds and π-πinteractions. © 2021 Elsevier Ltd.eng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85106995596&doi=10.1016%2fj.jece.2021.105685&partnerID=40&md5=370db76f2f839edae03e6d0a6e9b3f4c
dc.sourceJournal of Environmental Chemical Engineering
dc.titleUnderstanding the removal of an anionic dye in textile wastewaters by adsorption on ZnCl2activated carbons from rice and coffee husk wastes: A combined experimental and theoretical study
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1016/j.jece.2021.105685
dc.subject.keywordActivated carboneng
dc.subject.keywordAdsorptioneng
dc.subject.keywordAgro-industrial wasteeng
dc.subject.keywordCarbonaceous materialseng
dc.subject.keywordIndigo carmineeng
dc.relation.citationvolume9
dc.relation.citationissue4
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationParedes-Laverde, M., Grupo de Investigacion en Remediacion Ambiental y Biocatalisis (GIRAB), Instituto de Quimica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia, Grupo de Investigacion Cuidados de la Salud e Imagenes Diagnosticas, Facultad de Ciencias de la Salud, Fundacion Universitaria Navarra -UNINAVARRA, Calle 10 No. 6-41, Neiva, Colombia
dc.affiliationSalamanca, M., Escuela de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellin, Escuela de Quimica, Calle 59 A No 63-20, Medellin, Colombia
dc.affiliationDiaz-Corrales, J.D., Grupo de Investigacion en Remediacion Ambiental y Biocatalisis (GIRAB), Instituto de Quimica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia
dc.affiliationFlorez, E., Grupo de Materiales con Impacto, Matandmpac, Facultad de Ciencias Basicas, Universidad de Medellín, Medellin, Colombia
dc.affiliationSilva-Agredo, J., Grupo de Investigacion en Remediacion Ambiental y Biocatalisis (GIRAB), Instituto de Quimica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia
dc.affiliationTorres-Palma, R.A., Grupo de Investigacion en Remediacion Ambiental y Biocatalisis (GIRAB), Instituto de Quimica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia
dc.relation.referencesKhan, S., Anas, M., Malik, A., Mutagenicity and genotoxicity evaluation of textile industry wastewater using bacterial and plant bioassays (2019) Toxicol. Rep., 6, pp. 193-201
dc.relation.referencesPereira, A.G.B., Rodrigues, F.H.A., Paulino, A.T., Martins, A.F., Fajardo, A.R., Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: a review (2021) J. Clean. Prod., 284
dc.relation.referencesKhosravi, A., Karimi, M., Ebrahimi, H., Fallah, N., Sequencing batch reactor/nanofiltration hybrid method for water recovery from textile wastewater contained phthalocyanine dye and anionic surfactant (2020) J. Environ. Chem. Eng., 8
dc.relation.referencesEl-Shafey, E.-S.I., Ali, S.N.F., Al-Busafi, S., Al-Lawati, H.A.J., Preparation and characterization of surface functionalized activated carbons from date palm leaflets and application for methylene blue removal (2016) J. Environ. Chem. Eng., 4, pp. 2713-2724
dc.relation.referencesKhan, A.J., Song, J., Ahmed, K., Rahim, A., Volpe, P.L.O., Rehman, F., Amino-decorated mesoporous silica nanoparticles for controlled sofosbuvir delivery (2020) Eur. J. Pharm. Sci., 143
dc.relation.referencesSaad, M., Tahir, H., Khan, J., Hameed, U., Saud, A., Ultrasonics sonochemistry synthesis of polyaniline nanoparticles and their application for the removal of Crystal Violet dye by ultrasonicated adsorption process based on Response Surface Methodology (2017) Ultrason. Sonochem., 34, pp. 600-608
dc.relation.referencesKatheresan, V., Kansedo, J., Lau, S.Y., Efficiency of various recent wastewater dye removal methods: a review (2018) J. Environ. Chem. Eng., 6, pp. 4676-4697
dc.relation.referencesHassaan, M.A., El Nemr, A., Health and environmental impacts of dyes: mini review (2017) Am. J. Environ. Sci. Eng., 1, pp. 64-67
dc.relation.referencesSamchetshabam, G., Hussan, A., Choudhury, T.G., Impact of textile dyes waste on aquatic environments and its treatment (2017) Environ. Ecol.
dc.relation.referencesHan, R., Ding, D., Xu, Y., Zou, W., Wang, Y., Li, Y., Zou, L., Use of rice husk for the adsorption of congo red from aqueous solution in column mode (2008) Bioresour. Technol., 99, pp. 2938-2946
dc.relation.referencesVuono, D., Catizzone, E., Aloise, A., Policicchio, A., Agostino, R.G., Migliori, M., Giordano, G., Modelling of adsorption of textile dyes over multi-walled carbon nanotubes: equilibrium and kinetic (2017) Chin. J. Chem. Eng., 25, pp. 523-532
dc.relation.referencesTalaiekhozani, A., Mosayebi, M.R., Fulazzaky, M.A., Eskandari, Z., Sanayee, R., Combination of TiO2microreactor and electroflotation for organic pollutant removal from textile dyeing industry wastewater (2020) Alex. Eng. J., 59, pp. 549-563
dc.relation.referencesShen, C., Pan, Y., Wu, D., Liu, Y., Ma, C., Li, F., Ma, H., Zhang, Y., A crosslinking-induced precipitation process for the simultaneous removal of poly (vinyl alcohol) and reactive dye: The importance of covalent bond forming and magnesium coagulation (2019) Chem. Eng. J., 374, pp. 904-913
dc.relation.referencesJoseph, J., Radhakrishnan, R.C., Johnson, J.K., Joy, S.P., Thomas, J., Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate (2019) Mater. Chem. Phys., 242
dc.relation.referencesLiu, H., Zhang, J., Lu, M., Liang, L., Zhang, H., Wei, J., Biosynthesis based membrane fi ltration coupled with iron nanoparticles reduction process in removal of dyes (2020) Chem. Eng. J., 387
dc.relation.referencesLi, Z., Hanafy, H., Zhang, L., Sellaoui, L., Netto, M.S., Oliveira, M.L.S., Seliem, M.K., Li, Q., Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: experiments, characterization and physical interpretations (2020) Chem. Eng. J., 388
dc.relation.referencesOncel, M.S., Muhcu, A., Demirbas, E., Kobya, M., A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater (2013) J. Environ. Chem. Eng., 1, pp. 989-995
dc.relation.referencesLopez-Ortiz, C.M., Sentana-Gadea, I., Varo-Galvan, P., Maestre-Perez, S.E., Prats-Rico, D., The use of combined treatments for reducing parabens in surface waters: ion-exchange resin and nanofiltration (2018) Sci. Total Environ., 639, pp. 228-236
dc.relation.referencesIstirokhatun, T., Dewi, M.N., Ilma, H.I., Susanto, H., Separation of antiscalants from reverse osmosis concentrates using nanofiltration (2018) Desalination, 429, pp. 105-110
dc.relation.referencesPostai, D.L., Demarchi, C.A., Zanatta, F., Rodrigues, A., Caroline, D., Melo, C., Adsorption of rhodamine B and methylene blue dyes using waste of seeds of Aleurites Moluccana, a low cost adsorbent (2016) Alex. Eng. J., 55, pp. 1713-1723
dc.relation.referencesPrahas, D., Kartika, Y., Indraswati, N., Ismadji, S., Activated carbon from jackfruit peel waste by H3PO4chemical activation: Pore structure and surface chemistry characterization (2008) Chem. Eng. J., 140, pp. 32-42
dc.relation.referencesMenya, E., Olupot, P.W., Storz, H., Lubwama, M., Kiros, Y., Chemical engineering research and design production and performance of activated carbon from rice husks for removal of natural organic matter from water: a reviews (2018) Chem. Eng. Res. Des., 81, pp. 271-296
dc.relation.referencesMohanty, K., Das, D., Biswas, M.N., Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2activation (2005) Chem. Eng. J., 115, pp. 121-131
dc.relation.referencesChen, C., Park, S., Su, J.F., Yu, Y., Heo, J., Kim, K., Huang, C.P., The adsorption characteristics of fluoride on commercial activated carbon treated with quaternary ammonium salts (Quats) (2019) Sci. Total Environ., 693
dc.relation.referencesIsah, U.A., Abdulraheem, G., Bala, S., Muhammad, S., Abdullahi, M., Kinetics, equilibrium and thermodynamics studies of C.I. Reactive Blue 19 dye adsorption on coconut shell based activated carbon (2015) Int. Biodeterior. Biodegrad., 102, pp. 265-273
dc.relation.referencesAljeboree, A.M., Alshirifi, A.N., Alkaim, A.F., Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon (2017) Arab. J. Chem., 10, pp. 3381-3393
dc.relation.referencesSenthilkumaar, S., Kalaamani, P., Subburaam, C.V., Liquid phase adsorption of Crystal violet onto activated carbons derived from male flowers of coconut tree (2006) J. Hazard. Mater., 136, pp. 800-808
dc.relation.referencesDe Souza, T.N.V., De Carvalho, S.M.L., Vieira, M.G.A., Da Silva, M.G.C., Do, D., Brasil, S.B., Adsorption of basic dyes onto activated carbon: experimental and theoretical investigation of chemical reactivity of basic dyes using DFT-based descriptors (2018) Appl. Surf. Sci., 448, pp. 662-670
dc.relation.referencesGoswami, M., Phukan, P., Enhanced adsorption of cationic dyes using sulfonic acid modified activated carbon (2017) J. Environ. Chem. Eng., 5, pp. 3508-3517
dc.relation.referencesYahya, M.A., Al-Qodah, Z., Ngah, C.W.Z., Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review (2015) Renew. Sustain. Energy Rev., 46, pp. 218-235
dc.relation.referencesChen, Y., Zhu, Y., Wang, Z., Li, Y., Wang, L., Ding, L., Gao, X., Guo, Y., Application studies of activated carbon derived from rice husks produced by chemical-thermal process - a review (2011) Adv. Colloid Interface Sci., 163, pp. 39-52
dc.relation.referencesRovani, S., Rodrigues, A.G., Medeiros, L.F., Cataluna, R., Lima, E.C., Fernandes, A.N., Synthesis and characterisation of activated carbon from agroindustrial waste - preliminary study of 17β-estradiol removal from aqueous solution (2016) J. Environ. Chem. Eng., 4, pp. 2128-2137
dc.relation.referencesGonzalez-Garcia, P., Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications (2017) Renew. Sustain. Energy Rev., 82, pp. 1393-1414
dc.relation.referencesPineros-Castro, Y., Campos-Rosario, A., Otalvaro-Alvarez, A., Cortes-Ortiz William, P.J., Velasco, G., (2011) Aplicacion de tecnologias para el aprovechamiento de la cascarilla de arroz, , http://hdl.handle.net/20.500.12010/1960, ISBN:978-958-725-063-3
dc.relation.referencesRodriguez Valencia, N., Produccion de alcohol a partir de la pulpa de cafe (2013) Cenicafe, 64, pp. 78-93. , http://biblioteca.cenicafe.org/bitstream/10778/496/1/arc062%2801%2956-69.pdf
dc.relation.referencesLin, L., Zhai, S., Xiao, Z.-Y., Song, Y., An, Q.-D., Song, X.-W., Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks (2013) Bioresour. Technol., 136, pp. 437-443
dc.relation.referencesRonix, A., Pezoti, O., Souza, L.S., Souza, I.P.A., Bedin, K.C., Souza, P.S.C., Silva, T.L., Almeida, V.C., Hydrothermal carbonization of coffee husk: optimization of experimental parameters and adsorption of methylene blue dye (2017) J. Environ. Chem. Eng., 5, pp. 4841-4849
dc.relation.referencesAhmad, M.A., Rahman, N.K., Equilibrium, kinetics and thermodynamic of Remazol Brilliant Orange 3R dye adsorption on coffee husk-based activated carbon (2011) Chem. Eng. J., 170, pp. 154-161
dc.relation.referencesDing, L., Zou, B., Gao, W., Liu, Q., Wang, Z., Guo, Y., Wang, X., Liu, Y., Adsorption of Rhodamine-B from aqueous solution using treated rice husk-based activated carbon (2014) Colloids Surf. A Physicochem. Eng. Asp., 446, pp. 1-7
dc.relation.referencesParedes-Laverde, M., Salamanca, M., Silva-Agredo, J., Manrique-Losada, L., Torres-Palma, R.A., Selective removal of acetaminophen in urine with activated carbons from rice (Oryza sativa) and coffee (Co ffea arabica) husk: effect of activating agent, activation temperature and analysis of physical-chemical interactions (2019) J. Environ. Chem. Eng., 7
dc.relation.referencesGuechi, E.-K., Hamdaoui, O., Biosorption of methylene blue from aqueous solution by potato (Solanum tuberosum) peel: equilibrium modelling, kinetic, and thermodynamic studies (2015) Desalin. Water Treat., 57, pp. 10270-10285
dc.relation.referencesPillai, I.M.S., Gupta, A.K., Performance analysis of a continuous serpentine flow reactor for electrochemical oxidation of synthetic and real textile wastewater: energy consumption, mass transfer coefficient and economic analysis (2017) J. Environ. Manag., 193, pp. 524-531
dc.relation.referencesPan, X., Qin, X., Zhang, Q., Ge, Y., Ke, H., Cheng, G., N- And S-rich covalent organic framework for highly efficient removal of indigo carmine and reversible iodine capture (2020) Microporous Mesoporous Mater., 296
dc.relation.referencesFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani G. Barone, V., Fox, D.J., (2016) Gaussian 09, Revision A.02, , Gaussian, Inc., Wallingford CT
dc.relation.referencesYao, N., Li, C., Yu, J., Xu, Q., Wei, S., Tian, Z., Yang, Z., Shen, J., Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water (2019) Sep. Purif. Technol.
dc.relation.referencesWang, H., Guo, W., Liu, B., Wu, Q., Luo, H., Zhao, Q., Si, Q., Ren, N., Edge-nitrogenated biochar for efficient peroxydisulfate activation: an electron transfer mechanism (2019) Water Res., 160, pp. 405-414
dc.relation.referencesWu, Q.-Y., Lan, J.-H., Wang, C.-Z., Xiao, C.-L., Zhao, Y.-L., Wei, Y.-Z., Chai, Z.-F., Shi, W.-Q., Understanding the bonding nature of uranyl ion and functionalized graphene: a theoretical study (2014) J. Phys. Chem., 118, pp. 2149-2158
dc.relation.referencesChen, X., Oh, W.-D., Hu, Z.-T., Sun, Y.-M., Webster, R.D., Li, S.-Z., Lim, T.-T., Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes (2018) Appl. Catal. B Environ., 225, pp. 243-257
dc.relation.referencesKeith, M.J., Frisch, T.A., Inclusion of explicit solvent molecules in a self-consistent-reaction field model of salvation (2009) Modeling the Hydrogen Bond
dc.relation.referencesJin, Z., Wang, X., Sun, Y., Ai, Y., Wang, X., Adsorption of 4-n-nonylphenol and bisphenol-A on magnetic reduced graphene oxides: a combined experimental and theoretical studies (2015) Environ. Sci. Technol., 49, pp. 9168-9175
dc.relation.referencesSun, Y., Yang, S., Chen, Y., Ding, C., Cheng, W., Wang, X., Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study (2015) Environ. Sci. Technol., 49, pp. 4255-4262
dc.relation.referencesChen, Q., Zheng, J., Xu, J., Dang, Z., Zhang, L., Insights into sulfamethazine adsorption interfacial interaction mechanism on mesoporous cellulose biochar: coupling DFT/FOT simulations with experiments (2019) Chem. Eng. J., 356, pp. 341-349
dc.relation.referencesKalderis, D., Bethanis, S., Paraskeva, P., Diamadopoulos, E., Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times (2008) Bioresour. Technol., 99, pp. 6809-6816
dc.relation.referencesDin, A.T.M., Hameed, B.H., Ahmad, A.L., Batch adsorption of phenol onto physiochemical-activated coconut shell (2009) J. Hazard. Mater., 161, pp. 1522-1529
dc.relation.referencesUcar, S., Erdem, M., Tay, T., Karagoz, S., Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl2activation (2009) Appl. Surf. Sci., 255, pp. 8890-8896
dc.relation.referencesWang, S., Jiang, D., Cao, B., Hu, Y., Yuan, C., Wang, Q., He, Z., Zhang, B., Study on the interaction effect of seaweed bio-coke and rice husk volatiles during co-pyrolysis (2018) J. Anal. Appl. Pyrolysis, 132, pp. 111-122
dc.relation.referencesXue, S., Tu, B., Li, Z., Ma, X., Xu, Y., Li, M., Fang, C., Tao, H., Enhanced adsorption of Rhodamine B over Zoysia sinica Hance-based carbon activated by amminium chloride and sodium hydroxide treatments (2021) Colloids Surf. A Physicochem. Eng. Asp., 618
dc.relation.referencesWang, L., Wang, Z., Cheng, X., Zhang, M., Qin, Y., Ma, C., In situ DRIFTS study of the NO + CO reaction on Fe-Co binary metal oxides over activated semi-coke supports (2017) RSC Adv., 7, pp. 7695-7710
dc.relation.referencesKubovsky, I., Kačikova, D., Kačik, F., Structural changes of oak wood main components caused by thermal modification (2019) Polymers, 216, pp. 80-88
dc.relation.referencesOnal, Y., Akmil-Basar, C., Sarici-Ozdemir, C., Erdogan, S., Textural development of sugar beet bagasse activated with ZnCl2 (2007) J. Hazard. Mater., 142, pp. 138-143
dc.relation.referencesParedes-Laverde, M., Silva-Agredo, J., Torres-Palma, R.A., Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents (2018) J. Environ. Manag., 213, pp. 98-108
dc.relation.referencesSong, M., Wei, Y., Cai, S., Yu, L., Zhong, Z., Jin, B., Study on adsorption properties and mechanism of Pb2+with different carbon based adsorbents (2018) Sci. Total Environ., 618, pp. 1416-1422
dc.relation.referencesSegneanu, A.E., Gozescu, I., Dabici, A., Sfirloaga, P., Szabadai, Z., (2012) Organic Compounds FT-IR Spectroscopy, , https://doi.org/10.5772/50183, J. Uddin (Ed.), Macro To Nano Spectrosc
dc.relation.referencesMuniandy, L., Adam, F., Mohamed, A.R., Ng, E.P., The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH (2014) Microporous Mesoporous Mater., 197, pp. 316-323
dc.relation.referencesBarbosa, T.R., Foletto, E.L., Dotto, G.L., Jahn, S.L., Preparation of mesoporous geopolymer using metakaolin and rice husk ash as synthesis precursors and its use as potential adsorbent to remove organic dye from aqueous solutions (2018) Ceram. Int., 44, pp. 416-423
dc.relation.referencesDe Lorenzi, A., Giorgianni, S., Bini, R., High-resolution FTIR spectroscopy of the C - Cl stretching mode of vinyl chloride (1999) Mol. Phys., 96, pp. 101-108
dc.relation.referencesSing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (1985) Pure Appl. Chem., 57, pp. 603-619
dc.relation.referencesSaka, C., BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2 (2012) J. Anal. Appl. Pyrolysis, 95, pp. 21-24
dc.relation.referencesUzunova, S.A., Uzunov, I.M., Vassilev, S.V., Alexandrova, A.K., Staykov, S.G., Angelova, D.B., Preparation of low-ash-content porous carbonaceous material from rice husks (2010) Bulg. Chem. Commun., 42, pp. 130-137
dc.relation.referencesRodriguez, M.H., Yperman, J., Carleer, R., Maggen, J., Daddi, D., Gryglewicz, G., Van Der Bruggen, B., Otero, A., Adsorption of Ni(II) on spent coffee and coffee husk based activated carbon (2018) J. Environ. Chem. Eng., 6, pp. 1161-1170
dc.relation.referencesGoncalves, M., Guerreiro, M.C., Oliveira, L.C.A., Solar, C., Nazarro, M., Sapag, K., Micro mesoporous activated carbon from coffee husk as biomass waste for environmental applications (2013) Waste Biomass Valoriz., 4, pp. 395-400
dc.relation.referencesMaruyama, S.A., Tavares, S.R., Leitao, A.A., Wypych, F., Intercalation of indigo carmine anions into zinc hydroxide salt: a novel alternative blue pigment (2016) Dye. Pigment., 128, pp. 158-164
dc.relation.referencesYao, M., Kuratani, K., Kojima, T., Takeichi, N., Senoh, H., Kiyobayashi, T., Indigo carmine: an organic crystal as a positive-electrode material for rechargeable sodium batteries (2014) Sci. Rep., 4, pp. 1-6
dc.relation.referencesBadmus, M.A.O., Audu, T.O.K., Anyata, B.U., Removal of lead ion from industrial wastewaters by activated carbon prepared from periwinkle shells (Typanotonus fuscatus) (2007) Turk. J. Eng. Environ. Sci., 31, pp. 251-263
dc.relation.referencesRangabhashiyam, S., Selvaraju, N., Evaluation of the biosorption potential of a novel Caryota urens inflorescence waste biomass for the removal of hexavalent chromium from aqueous solutions (2015) J. Taiwan Inst. Chem. Eng., 47, pp. 59-70
dc.relation.referencesAljerf, L., High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: Kinetics and equilibrium study (2018) J. Environ. Manag., 225, pp. 120-132
dc.relation.referencesCruz, C.C.V., Da Costa, A.C.A., Henriques, C.A., Luna, A.S., Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. biomass (2004) Bioresour. Technol., 91, pp. 249-257
dc.relation.referencesGong, R., Ding, Y., Li, M., Yang, C., Liu, H., Sun, Y., Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution (2005) Dye. Pigment., 64, pp. 187-192
dc.relation.referencesJianlong, W., Yi, Q., Horan, N., Stentiford, E., Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass (2000) Bioresour. Technol., 75, pp. 157-161
dc.relation.referencesKhadhri, N., Saad, M.E.K., Ben Mosbah, M., Moussaoui, Y., Batch and continuous column adsorption of indigo carmine onto activated carbon derived from date palm petiole (2019) J. Environ. Chem. Eng., 7
dc.relation.referencesOdogu, A.N., Daouda, K., Desire, B.B.P., Nsami, N.J., Mbadcam, K.J., Removal of indigo carmine dye (IC) by batch adsorption method onto dried cola nut shells and its active carbon from aqueous medium (2016) Int. J. Eng. Sci. Res. Technol., 5, pp. 874-887
dc.relation.referencesGutierrez-Segura, E., Solache-Rios, M., Colin-Cruz, A., Sorption of indigo carmine by a Fe-zeolitic tuff and carbonaceous material from pyrolyzed sewage sludge (2009) J. Hazard. Mater., 170, pp. 1227-1235
dc.relation.referencesDe Carvalho, T.E.M., Fungaro, D.A., Magdalena, C.P., Cunico, P., Adsorption of indigo carmine from aqueous solution using coal fly ash and zeolite from fly ash (2011) J. Radioanal. Nucl. Chem., 289, pp. 617-626
dc.relation.referencesFungaro, D.A., Yamaura, M., Carvalho, T.E.M., Adsorption of anionic dyes from aqueous solution on zeolite from fly ash-iron oxide magnetic nanocomposite (2011) J. At. Mol. Sci., 2, pp. 305-316
dc.relation.referencesLakshmi, U.R., Srivastava, V.C., Mall, I.D., Lataye, D.H., Rice husk ash as an effective adsorbent: Evaluation of adsorptive characteristics for Indigo Carmine dye (2009) J. Environ. Manag., 90, pp. 710-720
dc.relation.referencesArenas, C.N., Vasco, A., Betancur, M., Martinez, J.D., Removal of indigo carmine (IC) from aqueous solution by adsorption through abrasive spherical materials made of rice husk ash (RHA) (2017) Process Saf. Environ. Prot., 106, pp. 224-238
dc.relation.referencesEl-Ashtoukhy, E.S.Z., Amin, N.K., Abdelwahab, O., Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent (2008) Desalination, 223, pp. 162-173
dc.relation.referencesAli, R.M., Hamad, H.A., Hussein, M.M., Malash, G.F., Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis (2016) Ecol. Eng., 91, pp. 317-332
dc.relation.referencesAhmed, M.J., Theydan, S.K., Fluoroquinolones antibiotics adsorption onto microporous activated carbon from lignocellulosic biomass by microwave pyrolysis (2014) J. Taiwan Inst. Chem. Eng., 45, pp. 219-226
dc.relation.referencesHu, Y., Chen, X., Liu, Z., Wang, G., Liao, S., Activated carbon doped with biogenic manganese oxides for the removal of indigo carmine (2016) J. Environ. Manag., 166, pp. 512-518
dc.relation.referencesAhmed, M.A., Brick, A.A., Mohamed, A.A., An efficient adsorption of indigo carmine dye from aqueous solution on mesoporous Mg/Fe layered double hydroxide nanoparticles prepared by controlled sol-gel route (2017) Chemosphere, 174, pp. 280-288
dc.relation.referencesTong, K.S., Kassim, M.J., Azraa, A., Adsorption of copper ion from its aqueous solution by a novel biosorbent Uncaria gambir: equilibrium, kinetics, and thermodynamic studies (2011) Chem. Eng. J., 170, pp. 145-153
dc.relation.referencesLi, P., Su, Y.J., Wang, Y., Liu, B., Sun, L.M., Bioadsorption of methyl violet from aqueous solution onto Pu-erh tea powder (2010) J. Hazard. Mater., 179, pp. 43-48
dc.relation.referencesZou, W.H., Zhao, L., Zhu, L., Efficient uranium(VI) biosorption on grapefruit peel: Kinetic study and thermodynamic parameters (2012) J. Radioanal. Nucl. Chem., 292, pp. 1303-1315
dc.relation.referencesDepci, T., Kul, A.R., Onal, Y., Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from Van apple pulp: study in single- And multi-solute systems (2012) Chem. Eng. J., 200-202, pp. 224-236
dc.relation.referencesChakraborty, S., Chowdhury, S., Das Saha, P., Adsorption of Crystal Violet from aqueous solution onto NaOH-modified rice husk (2011) Carbohydr. Polym., 86, pp. 1533-1541
dc.relation.referencesNassar, H., Zyoud, A., El-Hamouz, A., Tanbour, R., Halayqa, N., Hilal, H.S., Aqueous nitrate ion adsorption/desorption by olive solid waste-based carbon activated using ZnCl2 (2020) Sustain. Chem. Pharm., 18
dc.relation.referencesNguyen, H., You, S., Chao, H., Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: a comparison study (2016) J. Environ. Chem. Eng., 4, pp. 2671-2682
dc.relation.referencesHameed, B.H., Ahmad, A.A., Aziz, N., Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash (2007) Chem. Eng. J., 133, pp. 195-203
dc.relation.referencesSaha, P., Chowdhury, S., Insight into adsorption thermodynamics (2011) Thermodynamics, pp. 349-364. , https://doi.org/10.5772/13474
dc.relation.referencesTran, H.N., You, S.-J., Chao, H.-P., Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: a comparison study (2016) J. Environ. Chem. Eng., 4, pp. 2671-2682
dc.relation.referencesOgata, F., Imai, D., Kawasaki, N., Cationic dye removal from aqueous solution by waste biomass produced from calcination treatment of rice bran (2015) J. Environ. Chem. Eng., 3, pp. 1476-1485
dc.relation.referencesAvcu, T., Uner, O., Gecgel, U., Adsorptive removal of diclofenac sodium from aqueous solution onto sycamore ball activated carbon - isotherms, kinetics, and thermodynamic study (2021) Surf. Interfaces, 24
dc.relation.referencesLawrence, C.M., Module 2 - Functional Groups and Infrared Spectroscopy (2019) Org. Chem. I Drill, , https://digitalcommons.xula.edu/doc_cm/8%0AThis
dc.relation.referencesHirschmann, R.P., The vibrational spectra of alkyl isocyanates, isothiocyanates and thiocyanates (1963) Retrosp. Theses Diss., p. 2539. , http://lib.dr.iastate.edu/rtd%0Ahttp://lib.dr.iastate.edu/rtd/2539
dc.relation.referencesHevira, L., Rahmayeni, Z., Ighalo, J.O., Zein, R., Biosorption of indigo carmine from aqueous solution by Terminalia catappa shell (2020) J. Environ. Chem. Eng., 8
dc.relation.referencesPeng, B., Chen, L., Que, C., Yang, K., Deng, F., Deng, X., Shi, G., Wu, M., Adsorption of antibiotics on graphene and biochar in aqueous solutions induced by π-πinteractions (2016) Sci. Rep., 6, pp. 1-10
dc.relation.referencesFan, X., Cao, T., Yu, X., Wang, Y., Xiao, X., Li, F., Xie, Y., Peng, P., The evolutionary behavior of chromophoric brown carbon during ozone aging of fine particles from biomass burning (2020) Atmos. Chem. Phys., 20, pp. 4593-4605
dc.relation.referencesYoshino, Y., Chapter 15. Graded CM modules on graded CM rings (1990) Maximal Cohen-Macaulay Modul. Over Cohen-Macaulay Rings, pp. 135-142. , https://doi.org/10.1017/CBO9780511600685
dc.relation.referencesCanal, C., Ozen, B., Baysal, A.H., Characterization of antimicrobial activities of olive phenolics on yeasts using conventional methods and mid-infrared spectroscopy (2019) J. Food Sci. Technol., 56, pp. 149-158
dc.relation.referencesBoyaci, I.H., Temiz, H.T., Genis, H.E., Soykut, E.A., Yazgan, N.N., Guven, B., Uysal, R.S., Seker, F.C.D., Dispersive and FT-Raman spectroscopic methods in food analysis (2015) RSC Adv., 5, pp. 56606-56624
dc.relation.referencesSilva, L.S., Carvalho, J., De Sousa Bezerra, R.D., Silva, M.S., Ferreira, F.J.L., Osajima, J.A., Da Silva Filho, E.C., Potential of cellulose functionalized with carboxylic acid as biosorbent for the removal of cationic dyes in aqueous solution (2018) Molecules, 23, p. 743
dc.relation.referencesAlmoisheer, N., Alseroury, F.A., Kumar, R., Aslam, M., Barakat, M.A., Adsorption and anion exchange insight of indigo carmine onto CuAl-LDH/SWCNTs nanocomposite: kinetic, thermodynamic and isotherm analysis (2019) RSC Adv., 9, pp. 560-568
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem