Mostrar el registro sencillo del ítem

dc.contributor.authorPérez S
dc.contributor.authorMuñoz-Saldaña J
dc.contributor.authorGarcia-Nunez J.A
dc.contributor.authorAcelas N
dc.contributor.authorFlórez E.
dc.date.accessioned2022-09-14T14:34:19Z
dc.date.available2022-09-14T14:34:19Z
dc.date.created2022
dc.identifier.issn456535
dc.identifier.urihttp://hdl.handle.net/11407/7616
dc.descriptionPhosphorus (P) adsorption from aqueous solutions is usually evaluated by monitoring the P concentration and employed kinetic models. In this work, three adsorbents obtained from eggshell (ES) and eggshell mixed with palm mesocarp fiber (ESF-1:1 and ESF-1:10) at different Ca(OH)2/CaCO3 compositions were evaluated, and the Ca–P species formed monitored as a function of time deconvoluting Fourier Transform Infrared (FTIR) spectra. At 0.25 h the ESF-1:10 (Ca(OH)2: 26.2 wt%) exhibited better adsorption performance of 35 mgg−1 while ESF-1:1 and ES (Ca(OH)2: 2.8 and 3.0 wt%) showed 26 and 4 mgg−1, respectively. Characteristic PO43− bands in apatite were corroborated by XRD and FTIR. It was found that the role of Ca(OH)2 in the adsorption ends before 0.25 h, and thereafter CaCO3 becomes the phase responsible for the removal of orthophosphate H2PO4−/HPO42−/PO43− ions. The results indicate a direct ligand exchange of CO32− for PO43− that takes place while increasing the apatite crystallinity. On the other hand, the P adsorption process is also dependent on P concentration. At low P concentrations, characteristic bands of PO43− in apatite were observed in FTIR, while at high concentrations, characteristic bands for adsorbed HPO42− were obtained. The obtained results give a relevant role to CaCO3 in P adsorption. Kinetic analysis for Ca-based biocomposites showed that the Avrami order kinetic model fits better for the adsorbents. For P adsorption isotherm process the Langmuir's isotherms showed a good fit, with a maximum adsorption capacity of 90.8, 134.0, and 67.9 mgg−1 for ES, ESF-1:1, and ESF-1:10, respectively. © 2021eng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85115385348&doi=10.1016%2fj.chemosphere.2021.132333&partnerID=40&md5=052fc0fec05bf20ba8a74a695280b08c
dc.sourceChemosphere
dc.titleUnraveling the Ca–P species produced over the time during phosphorus removal from aqueous solution using biocomposite of eggshell-palm mesocarp fiber
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1016/j.chemosphere.2021.132333
dc.subject.keywordApatiteeng
dc.subject.keywordCalcium phosphateeng
dc.subject.keywordEggshelleng
dc.subject.keywordInfrared spectroscopyeng
dc.subject.keywordWastewatereng
dc.relation.citationvolume287
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationPérez, S., Grupo de Investigación Materiales con Impacto (Mat&mpac) Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationMuñoz-Saldaña, J., Centro de Investigación y de Estudios Avanzados del IPN, Lib. Norponiente No.2000, Fracc. Real de Juriquilla, Querétaro, Qro 76230, Mexico
dc.affiliationGarcia-Nunez, J.A., Colombian Oil Palm Research Centre, Cenipalma, Bogotá, Colombia
dc.affiliationAcelas, N., Grupo de Investigación Materiales con Impacto (Mat&mpac) Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationFlórez, E., Grupo de Investigación Materiales con Impacto (Mat&mpac) Universidad de Medellín, Medellín, 050026, Colombia
dc.relation.referencesArai, Y., Sparks, D.L., ATR–FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite–water interface (2001) J. Colloid Interface Sci., 241, pp. 317-326
dc.relation.referencesAyodele, O.B., Lethesh, K.C., Gholami, Z., Uemura, Y., Effect of ethanedioic acid functionalization on Ni/Al2O3 catalytic hydrodeoxygenation and isomerization of octadec-9-enoic acid into biofuel: kinetics and Arrhenius parameters (2016) J. Energy Chem., 25, pp. 158-168
dc.relation.referencesBerzina-Cimdina, L., Borodajenko, N., Research of calcium phosphates using fourier transform infrared spectroscopy (2012) Infrared Spectroscopy - Materials Science, Engineering and Technology, , InTech
dc.relation.referencesBlanco, I., Molle, P., Sáenz de Miera, L.E., Ansola, G., Basic Oxygen Furnace steel slag aggregates for phosphorus treatment. Evaluation of its potential use as a substrate in constructed wetlands (2016) Water Res., 89, pp. 355-365
dc.relation.referencesBrangule, A., Gross, K.A., Importance of FTIR spectra deconvolution for the analysis of amorphous calcium phosphates (2015) IOP Conf. Ser. Mater. Sci. Eng., 77
dc.relation.referencesCao, H., Wu, X., Syed-Hassan, S.S.A., Zhang, S., Mood, S.H., Milan, Y.J., Garcia-Perez, M., Characteristics and mechanisms of phosphorous adsorption by rape straw-derived biochar functionalized with calcium from eggshell (2020) Bioresour. Technol., 318, p. 124063
dc.relation.referencesChakraborty, T., Gabriel, M., Amiri, A.S., Santoro, D., Walton, J., Smith, S., Ray, M.B., Nakhla, G., Carbon and phosphorus removal from primary municipal wastewater using recovered aluminum (2017) Environ. Sci. Technol., 51, pp. 12302-12309
dc.relation.referencesChen, D., Szostak, P., Wei, Z., Xiao, R., Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate (2016) Sci. Total Environ., 539, pp. 381-387
dc.relation.referencesChen, J., Tang, S., Yan, F., Zhang, Z., Efficient recovery of phosphorus in sewage sludge through hydroxylapatite enhancement formation aided by calcium-based additives (2020) Water Res., 171, p. 115450
dc.relation.referencesChen, W., Li, K., Chen, Z., Xia, M., Chen, Y., Yang, H., Chen, X., Chen, H., A new insight into chemical reactions between biomass and alkaline additives during pyrolysis process (2021) Proc. Combust. Inst., 38, pp. 3881-3890
dc.relation.referencesCichy, B., Kużdżał, E., Krztoń, H., Phosphorus recovery from acidic wastewater by hydroxyapatite precipitation (2019) J. Environ. Manag., 232, pp. 421-427
dc.relation.referencesCieślik, B., Konieczka, P., A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods (2017) J. Clean. Prod., 142, pp. 1728-1740
dc.relation.referencesCordell, D., Drangert, J.O., White, S., The story of phosphorus: global food security and food for thought (2009) Global Environ. Change, 19, pp. 292-305
dc.relation.referencesDel Nero, M., Galindo, C., Barillon, R., Halter, E., Madé, B., Surface reactivity of α-Al2O3 and mechanisms of phosphate sorption: in situ ATR-FTIR spectroscopy and ζ potential studies (2010) J. Colloid Interface Sci., 342, pp. 437-444
dc.relation.referencesdos Reis Glaydson, S., Grigore Cazacliu, B., Rodriguez Correa, C., Ovsyannikova, E., Kruse, A., Hoffmann Sampaio, C., Lima, E.C., Dotto, G.L., Adsorption and recovery of phosphate from aqueous solution by the construction and demolition wastes sludge and its potential use as phosphate-based fertiliser (2020) J. Environ. Chem. Eng., 8, p. 103605
dc.relation.referencesdos Reis Glaydson, S., Thue, P.S., Cazacliu, B.G., Lima, E.C., Sampaio, C.H., Quattrone, M., Ovsyannikova, E., Dotto, G.L., Effect of concrete carbonation on phosphate removal through adsorption process and its potential application as fertilizer (2020) J. Clean. Prod., 256, p. 120416
dc.relation.referencesDrouet, C., apatite formation: why it may not work as planned, and how to conclusively identify apatite compounds (2013) BioMed Res. Int., 1-12. , 2013
dc.relation.referencesFeng, X.-C., Bao, X., Che, L., Wu, Q.-L., Enhance biological nitrogen and phosphorus removal in wastewater treatment process by adding food waste fermentation liquid as external carbon source (2021) Biochem. Eng. J., 165, p. 107811
dc.relation.referencesFlower, H., Rains, M., Taşcı, Y., Zhang, J.-Z., Trout, K., Lewis, D., Das, A., Dalton, R., Why is calcite a strong phosphorus sink in freshwater? Investigating the adsorption mechanism using batch experiments and surface complexation modeling (2022) Chemosphere, 286, p. 131596
dc.relation.referencesGarcia-Nunez, J.A., Ramirez-Contreras, N.E., Rodriguez, D.T., Silva-Lora, E., Frear, C.S., Stockle, C., Garcia-Perez, M., Evolution of palm oil mills into bio-refineries: literature review on current and potential uses of residual biomass and effluents (2016) Resour. Conserv. Recycl., 110, pp. 99-114
dc.relation.referencesGiraldo, S., Robles, I., Ramirez, A., Flórez, E., Acelas, N., Mercury removal from wastewater using agroindustrial waste adsorbents (2020) SN Appl. Sci., 2, pp. 1-17
dc.relation.referencesGrisales-Cifuentes, C.M., Serna Galvis, E.A., Porras, J., Flórez, E., Torres-Palma, R.A., Acelas, N., Kinetics, isotherms, effect of structure, and computational analysis during the removal of three representative pharmaceuticals from water by adsorption using a biochar obtained from oil palm fiber (2021) Bioresour. Technol., 326, p. 124753
dc.relation.referencesGu, S., Fu, B., Ahn, J.-W., Fang, B., Mechanism for phosphorus removal from wastewater with fly ash of municipal solid waste incineration, Seoul, Korea (2021) J. Clean. Prod., 280, p. 124430
dc.relation.referencesGypser, S., Hirsch, F., Schleicher, A.M., Freese, D., Impact of crystalline and amorphous iron- and aluminum hydroxides on mechanisms of phosphate adsorption and desorption (2018) J. Environ. Sci. (China), 70, pp. 175-189
dc.relation.referencesJupp, A.R., Beijer, S., Narain, G.C., Schipper, W., Slootweg, J.C., Phosphorus recovery and recycling-closing the loop (2021) Chem. Soc. Rev., 50, pp. 87-101
dc.relation.referencesKöse, T.E., Kivanç, B., Adsorption of phosphate from aqueous solutions using calcined waste eggshell (2011) Chem. Eng. J., 178, pp. 34-39
dc.relation.referencesKourkoumelis, N., Zhang, X., Lin, Z., Wang, J., Fourier transform infrared spectroscopy of bone tissue: bone quality assessment in preclinical and clinical applications of osteoporosis and fragility fracture (2019) Clin. Rev. Bone Miner. Metabol., 17, pp. 24-39
dc.relation.referencesKoutsopoulos, S., Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods (2002) J. Biomed. Mater. Res., 62, pp. 600-612
dc.relation.referencesLi, R., Wang, J.J., Zhou, B., Awasthi, M.K., Ali, A., Zhang, Z., Gaston, L.A., Mahar, A., Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios (2016) Sci. Total Environ., 559, pp. 121-129
dc.relation.referencesLi, X., Xie, Y., Jiang, F., Wang, B., Hu, Q., Tang, Y., Luo, T., Wu, T., Enhanced phosphate removal from aqueous solution using resourceable nano-CaO2/BC composite: behaviors and mechanisms (2020) Sci. Total Environ., 709, p. 136123
dc.relation.referencesLima, É.C., Adebayo, M.A., Machado, F.M., Kinetic and equilibrium models of adsorption (2015) Carbon Nanostructures, pp. 33-69. , Springer International Publishing
dc.relation.referencesLimousin, G., Gaudet, J.-P., Charlet, L., Szenknect, S., Barthès, V., Krimissa, M., Sorption isotherms: a review on physical bases, modeling and measurement (2007) Appl. Geochem., 22, pp. 249-275
dc.relation.referencesLiu, R., Chi, L., Wang, X., Sui, Y., Wang, Y., Arandiyan, H., Review of metal (hydr)oxide and other adsorptive materials for phosphate removal from water (2018) J. Environ. Chem. Eng., 6, pp. 5269-5286
dc.relation.referencesLiu, X., Shen, F., Qi, X., Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw (2019) Sci. Total Environ., 666, pp. 694-702
dc.relation.referencesLopes, E.C.N., Dos Anjos, F.S.C., Vieira, E.F.S., Cestari, A.R., An alternative Avrami equation to evaluate kinetic parameters of the interaction of Hg(II) with thin chitosan membranes (2003) J. Colloid Interface Sci., 263, pp. 542-547
dc.relation.referencesMa, H., Guo, Y., Qin, Y., Li, Y.-Y., Nutrient recovery technologies integrated with energy recovery by waste biomass anaerobic digestion (2018) Bioresour. Technol., 269, pp. 520-531
dc.relation.referencesMelia, P.M., Busquets, R., Hooda, P.S., Cundy, A.B., Sohi, S.P., Driving forces and barriers in the removal of phosphorus from water using crop residue, wood and sewage sludge derived biochars (2019) Sci. Total Environ., 675, pp. 623-631
dc.relation.referencesPan, B., Wu, J., Pan, B., Lv, L., Zhang, W., Xiao, L., Wang, X., Zheng, S., Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents (2009) Water Res., 43, pp. 4421-4429
dc.relation.referencesPérez, S., Muñoz-Saldaña, J., Acelas, N., Flórez, E., Phosphate removal from aqueous solutions by heat treatment of eggshell and palm fiber (2021) J. Environ. Chem. Eng., 9, p. 104684
dc.relation.referencesPratt, C., Shilton, A., Pratt, S., Haverkamp, R.G., Bolan, N.S., Phosphorus removal mechanisms in active slag filters treating waste stabilization pond effluent (2007) Environ. Sci. Technol., 41, pp. 3296-3301
dc.relation.referencesRabinovich, A., Rouff, A.A., Effect of phenolic organics on the precipitation of struvite from simulated dairy wastewater (2021) ACS ES&T Water, 1, pp. 910-918
dc.relation.referencesRamirez-Muñoz, A., Pérez, S., Flórez, E., Acelas, N., Recovering phosphorus from aqueous solutions using water hyacinth (Eichhornia Crassipes) toward sustainability through its transformation to apatite (2021) J. Environ. Chem. Eng., 9, p. 106225
dc.relation.referencesRey, C., Shimizu, M., Collins, B., Glimcher, M.J., Resolution-enhanced fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in the v3 PO4 domain (1991) Calcif. Tissue Int., 49, pp. 383-388
dc.relation.referencesSantos, A.F., Arim, A.L., Lopes, D.V., Gando-Ferreira, L.M., Quina, M.J., Recovery of phosphate from aqueous solutions using calcined eggshell as an eco-friendly adsorbent (2019) J. Environ. Manag., 238, pp. 451-459
dc.relation.referencesSong, Y., Weidler, P.G., Berg, U., Nüesch, R., Donnert, D., Calcite-seeded crystallization of calcium phosphate for phosphorus recovery (2006) Chemosphere, 63, pp. 236-243
dc.relation.referencesSun, D., Hale, L., Kar, G., Soolanayakanahally, R., Adl, S., Phosphorus recovery and reuse by pyrolysis: applications for agriculture and environment (2018) Chemosphere, 194, pp. 682-691
dc.relation.referencesTang, S., Yan, F., Zheng, C., Zhang, Z., Novel calcium oxide-enhancement phosphorus recycling technique through sewage sludge pyrolysis (2018) ACS Sustain. Chem. Eng., 6, pp. 9167-9177
dc.relation.referencesToby, B.H., R factors in Rietveld analysis: how good is good enough? (2006) Powder Diffr., 21, pp. 67-70
dc.relation.referencesTorit, J., Phihusut, D., Phosphorus removal from wastewater using eggshell ash (2019) Environ. Sci. Pollut. Res., 26, pp. 34101-34109
dc.relation.referencesVandecandelaere, N., Rey, C., Drouet, C., Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters (2012) J. Mater. Sci. Mater. Med., 23, pp. 2593-2606
dc.relation.referencesWang, L., Nancollas, G.H., Calcium orthophosphates: crystallization and dissolution (2008) Chem. Rev., 108, pp. 4628-4669
dc.relation.referencesWang, S., Kong, L., Long, J., Su, M., Diao, Z., Chang, X., Chen, D., Shih, K., Adsorption of phosphorus by calcium-flour biochar: isotherm, kinetic and transformation studies (2018) Chemosphere, 195, pp. 666-672
dc.relation.referencesWu, B., Wan, J., Zhang, Y., Pan, B., Lo, I.M.C., Selective phosphate removal from water and wastewater using sorption: process fundamentals and removal mechanisms (2019) Environ. Sci. Technol., 54. , acs.est.9b05569
dc.relation.referencesWu, F., Yu, Q., Gauvin, F., Brouwers, H.J.H., Liu, C., Phosphorus removal from aqueous solutions by adsorptive concrete aggregates (2021) J. Clean. Prod., 278, p. 123933
dc.relation.referencesYin, H., Yan, X., Gu, X., Evaluation of thermally-modified calcium-rich attapulgite as a low-cost substrate for rapid phosphorus removal in constructed wetlands (2017) Water Res., 115, pp. 329-338
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem