Mostrar el registro sencillo del ítem

dc.contributor.authorMorales L.F
dc.contributor.authorHerrera K
dc.contributor.authorLópez J.E
dc.contributor.authorSaldarriaga J.F.
dc.date.accessioned2022-09-14T14:34:20Z
dc.date.available2022-09-14T14:34:20Z
dc.date.created2021
dc.identifier.issn24058440
dc.identifier.urihttp://hdl.handle.net/11407/7618
dc.descriptionBiochar has unique properties such as its porous structure, specific surface area, and stable chemical properties. The rice husk is characterized by its high content of silica, and that during the pyrolysis process it generates a considerable amount of biochar that can be used in different processes. The aim of this work is to evaluate several biochars from the pyrolysis process in the reactivity of lime pastes. For this, biochar has been obtained at four different temperatures (450, 500, 550 and 600 °C), and they have been characterized by XRF, XRD, ICP-EOS, and particle size distribution, to determine their phases and their chemical composition. Biochar has been replaced in lime pastes in different proportions (5, 10, 15, 20, 25 and 30%), and exposed to different curing times (1, 3, 7, 14, 28, 56, 90 and 180 days). It has been found that all the replacements show reactivity within the lime pastes and that the percentage of 25% in all the biochar tested could be an adequate replacement. © 2021eng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85119440949&doi=10.1016%2fj.heliyon.2021.e08423&partnerID=40&md5=74ba4f93b1ca8c218ca5ab055c402629
dc.sourceHeliyon
dc.titleUse of biochar from rice husk pyrolysis: assessment of reactivity in lime pastes
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.type.spaArtículo
dc.identifier.doi10.1016/j.heliyon.2021.e08423
dc.subject.keywordBiochareng
dc.subject.keywordLime pasteseng
dc.subject.keywordPyrolysiseng
dc.subject.keywordReactivityeng
dc.subject.keywordRice huskeng
dc.relation.citationvolume7
dc.relation.citationissue11
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationMorales, L.F., Dept. of Civil and Environmental Engineering, Universidad de Los Andes, 1Este #19A-40, Bogotá, 111711, Colombia
dc.affiliationHerrera, K., Dept. of Civil and Environmental Engineering, Universidad de Los Andes, 1Este #19A-40, Bogotá, 111711, Colombia
dc.affiliationLópez, J.E., Environmental Engineering Program, Universidad de Medellín, Carrera 87 #30-65, Medellín, 050026, Colombia
dc.affiliationSaldarriaga, J.F., Dept. of Civil and Environmental Engineering, Universidad de Los Andes, 1Este #19A-40, Bogotá, 111711, Colombia
dc.relation.referencesQiu, B., Tao, X., Wang, H., Li, W., Ding, X., Chu, H., Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review (2021) J. Anal. Appl. Pyrol., 155, p. 105081
dc.relation.referencesXiao, F., Bedane, A.H., Mallula, S., Sasi, P.C., Alinezhad, A., Soli, D., Hagen, Z.M., Mann, M.D., Production of granular activated carbon by thermal air oxidation of biomass charcoal/biochar for water treatment in rural communities: a mechanistic investigation (2020) Chem. Engin. J. Adv., 4, p. 100035
dc.relation.referencesSaldarriaga, J.F., Patiño, J.L., Lizarazo, M.J., Kinetic study of spiny retamo (ulex Eurioaeus L.) waste oxidative pyrolysis (2018) Chem. Engin. Transact., 70, pp. 1249-1254
dc.relation.referencesSaldarriaga, J.F., Aguado, R., Pablos, A., Amutio, M., Olazar, M., Bilbao, J., Fast characterization of biomass fuels by thermogravimetric analysis (TGA) (2015) Fuel, 140, pp. 744-751
dc.relation.referencesAguado, R., Saldarriaga, J.F., Atxutegi, A., Bilbao, J., Olazar, M., Influence of the kinetic scheme and heat balance on the modelling of biomass combustion in a conical spouted bed (2019) Energy, 175, pp. 758-767
dc.relation.referencesOsorio-Castiblanco, D.F., Peyre, G., Saldarriaga, J.F., Physicochemical analysis and essential oils extraction of the gorse (ulex europaeus) and French broom (Genista monspessulana), two highly invasive species in the Colombian Andes (2020) Sustainability, 12, p. 57
dc.relation.referencesRodríguez, F., Cruz, Y., Estiati, I., Saldarriaga, J.F., Kinetic study of corn and sugarcane waste oxidative pyrolysis (2019) Energies, 12, p. 4594
dc.relation.referencesSaldarriaga, J.F., Montoya, N.A., Estiati, I., Aguayo, A.T., Aguado, R., Olazar, M., Unburned material from biomass combustion as low-cost adsorbent for amoxicillin removal from wastewater (2021) J. Clean. Prod., 284, p. 124732
dc.relation.referencesMaljaee, H., Madadi, R., Paiva, H., Tarelho, L., Ferreira, V.M., Incorporation of biochar in cementitious materials: a roadmap of biochar selection (2021) Construct. Build. Mater., 283, p. 122757
dc.relation.referencesMuthukrishnan, S., Gupta, S., Kua, H.W., Application of rice husk biochar and thermally treated low silica rice husk ash to improve physical properties of cement mortar (2019) Theor. Appl. Fract. Mech., 104, p. 102376
dc.relation.referencesThomas, N.L., Birchall, J.D., The retarding action of sugars on cement hydration (1983) Cement Concr. Res., 13, pp. 830-842
dc.relation.referencesNovais, R.M., Saeli, M., Caetano, A.P.F., Seabra, M.P., Labrincha, J.A., Surendran, K.P., Pullar, R.C., Pyrolysed cork-geopolymer composites: a novel and sustainable EMI shielding building material (2019) Construct. Build. Mater., 229, p. 116930
dc.relation.referencesFarges, R., Gharzouni, A., Ravier, B., Jeulin, P., Rossignol, S., Insulating foams and dense geopolymers from biochar by-products (2018) J. Ceram. Sci. Techn., 9, p. 193
dc.relation.referencesLee, H., Yang, S., Wi, S., Kim, S., Thermal transfer behavior of biochar-natural inorganic clay composite for building envelope insulation (2019) Construct. Build. Mater., 223, pp. 668-678
dc.relation.referencesWalters, R.C., Fini, E.H., Abu-Lebdeh, T., Enhancing asphalt rheological behavior and aging susceptibility using bio-char and nano-clay (2014) Am. J. Eng. Appl. Sci., 7, pp. 66-76
dc.relation.referencesZhao, S., Huang, B., Shu, X., Ye, P., Laboratory investigation of biochar-modified asphalt mixture (2014) Transport. Res. Rec., 2445, pp. 56-63
dc.relation.referencesYang, S., Wi, S., Lee, J., Lee, H., Kim, S., Biochar-red clay composites for energy efficiency as eco-friendly building materials: thermal and mechanical performance (2019) J. Hazard Mater., 373, pp. 844-855
dc.relation.referencesWoolf, D., Amonette, J.E., Street-Perrott, F.A., Lehmann, J., Joseph, S., Sustainable biochar to mitigate global climate change (2010) Nat. Commun., 1, p. 56
dc.relation.referencesRoberts, K.G., Gloy, B.A., Joseph, S., Scott, N.R., Lehmann, J., Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential (2010) Environ. Sci. Technol., 44, pp. 827-833
dc.relation.referencesLi, Z., Xu, G., Shi, X., Reactivity of coal fly ash used in cementitious binder systems: a state-of-the-art overview (2021) Fuel, 301, p. 121031
dc.relation.referencesHemalatha, T., Ramaswamy, A., A review on fly ash characteristics – towards promoting high volume utilization in developing sustainable concrete (2017) J. Clean. Prod., 147, pp. 546-559
dc.relation.referencesLi, Z., Fei, M.-E., Huyan, C., Shi, X., Nano-engineered, fly ash-based geopolymer composites: an overview (2021) Resour. Conserv. Recycl., 168, p. 105334
dc.relation.referencesHu, X., Shi, C., Shi, Z., Tong, B., Wang, D., Early age shrinkage and heat of hydration of cement-fly ash-slag ternary blends (2017) Construct. Build. Mater., 153, pp. 857-865
dc.relation.referencesChalee, W., Ausapanit, P., Jaturapitakkul, C., Utilization of fly ash concrete in marine environment for long term design life analysis (2010) Mater. Des., 31, pp. 1242-1249
dc.relation.referencesSua-iam, G., Makul, N., Incorporation of high-volume fly ash waste and high-volume recycled alumina waste in the production of self-consolidating concrete (2017) J. Clean. Prod., 159, pp. 194-206
dc.relation.referencesBouzoubaâ, N., Lachemi, M., Self-compacting concrete incorporating high volumes of class F fly ash: preliminary results (2001) Cement Concr. Res., 31, pp. 413-420
dc.relation.referencesSiddique, R., Performance characteristics of high-volume Class F fly ash concrete (2004) Cement Concr. Res., 34, pp. 487-493
dc.relation.referencesRodríguez-Fernández, M.C., Alonso, J.D., Montero, C., Saldarriaga, J.F., Study of the effects of the addition of fly ash from carwash sludge in lime and cement pastes (2020) Sustainability, 12, p. 6451
dc.relation.referencesKarahan, O., Atiş, C.D., The durability properties of polypropylene fiber reinforced fly ash concrete (2011) Mater. Des., 32, pp. 1044-1049
dc.relation.referencesGene, J.M., Gaviria, X., Saldarriaga, J.F., Evaluation of fly ash reactivity from incineration of hazardous waste in lime pastes (2019) Chem. Engin. Transact., 75, pp. 619-624
dc.relation.referencesDu, S., Shi, X., Ge, Y., Electron probe microanalysis investigation into high-volume fly ash mortars (2017) J. Mater. Civ. Eng., 29
dc.relation.referencesDu, S., Zhao, H., Ge, Y., Yang, Z., Shi, X., Laboratory investigation into the modification of transport properties of high-volume fly ash mortar by chemical admixtures (2017) J. Mater. Civ. Eng., 29
dc.relation.referencesSan Nicolas, R.V.R., Walkley, B., van Deventer, J.S.J., 7 - fly ash-based geopolymer chemistry and behavior (2017) Coal Combustion Products (CCP's), pp. 185-214. , T. Robl A. Oberlink R. Jones Woodhead Publishing
dc.relation.referencesXie, N., Shi, X., Dang, Y., Pace, A., Upcycling of waste materials: green binder prepared with pure coal fly ash (2016) J. Mater. Civ. Eng., 28
dc.relation.referencesSomna, K., Jaturapitakkul, C., Kajitvichyanukul, P., Chindaprasirt, P., NaOH-activated ground fly ash geopolymer cured at ambient temperature (2011) Fuel, 90, pp. 2118-2124
dc.relation.referencesLi, Z., Shi, X., Graphene oxide modified, clinker-free cementitious paste with principally alkali-activated fly ash (2020) Fuel, 269, p. 117418
dc.relation.referencesXu, G., Zhong, J., Shi, X., Influence of graphene oxide in a chemically activated fly ash (2018) Fuel, 226, pp. 644-657
dc.relation.referencesKomljenović, M., Baščarević, Z., Bradić, V., Mechanical and microstructural properties of alkali-activated fly ash geopolymers (2010) J. Hazard Mater., 181, pp. 35-42
dc.relation.referencesStandard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete (2019)
dc.relation.referencesStandard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete (2019)
dc.relation.referencesThomas, M., Jewell, R., Jones, R., 5 - coal fly ash as a pozzolan (2017) Coal Combustion Products (CCP's), pp. 121-154. , T. Robl A. Oberlink R. Jones Woodhead Publishing
dc.relation.referencesKaladharan, G., Gholizadeh-Vayghan, A., Rajabipour, F., Review, sampling, and evaluation of landfilled fly ash (2019) M C J. Media Cult., 116, pp. 113-122
dc.relation.referencesStandard Methods, 2560 particle counting and size distribution (2018) Standard Methods for the Examination of Water and Wastewater, , American Public Health Association
dc.relation.referencesArenas-Piedrahita, J.C., Montes-García, P., Mendoza-Rangel, J.M., López Calvo, H.Z., Valdez-Tamez, P.L., Martínez-Reyes, J., Mechanical and durability properties of mortars prepared with untreated sugarcane bagasse ash and untreated fly ash (2016) Construct. Build. Mater., 105, pp. 69-81
dc.relation.referencesPavlíková, M., Zemanová, L., Pokorný, J., Záleská, M., Jankovský, O., Lojka, M., Sedmidubský, D., Pavlík, Z., Valorization of wood chips ash as an eco-friendly mineral admixture in mortar mix design (2018) Waste Manag., 80, pp. 89-100
dc.relation.referencesC305:-14: Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency (2015), ASTM International
dc.relation.referencesChusilp, N., Jaturapitakkul, C., Kiattikomol, K., Utilization of bagasse ash as a pozzolanic material in concrete (2009) Construct. Build. Mater., 23, pp. 3352-3358
dc.relation.referencesGaviria, X., Borrachero, M.V., Payá, J., Monzó, J.M., Tobón, J.I., Mineralogical evolution of cement pastes at early ages based on thermogravimetric analysis (TG) (2018) J. Therm. Anal. Calorim., 132, pp. 39-46
dc.relation.referencesPottmaier, D., Costa, M., Farrow, T., Oliveira, A.A.M., Alarcon, O., Snape, C., Comparison of rice husk and wheat straw: from slow and fast pyrolysis to char combustion (2013) Energy Fuels, 27, pp. 7115-7125
dc.relation.referencesBourke, J., Manley-Harris, M., Fushimi, C., Dowaki, K., Nunoura, T., Antal, M.J., Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal (2007) Ind. Eng. Chem. Res., 46, pp. 5954-5967
dc.relation.referencesLu, L., Sahajwalla, V., Harris, D., Characterization of chars prepared from various pulverized coals at different temperatures using drop-tube furnace (2000), 4, pp. 869-876. , Energy Fuels. 14 (2000) 1125–1125
dc.relation.referencesKercher, A.K., Nagle, D.C., Microstructural evolution during charcoal carbonization by X-ray diffraction analysis (2003) Carbon, 41, pp. 15-27
dc.relation.referencesAmen, R., Yaseen, M., Mukhtar, A., Klemeš, J.J., Saqib, S., Ullah, S., Al-Sehemi, A.G., Bokhari, A., Lead and cadmium removal from wastewater using eco-friendly biochar adsorbent derived from rice husk, wheat straw, and corncob (2020) Clean. Engin. Techn., 1, p. 100006
dc.relation.referencesHsiao, M.-C., Liao, S.-H., Yen, M.-Y., Liu, P.-I., Pu, N.-W., Wang, C.-A., Ma, C.-C.M., Preparation of covalently functionalized graphene using residual oxygen-containing functional groups (2010) ACS Appl. Mater. Interfaces, 2, pp. 3092-3099
dc.relation.referencesThapa, V.B., Waldmann, D., Performance of lime-metakaolin pastes using gravel wash mud (GWM) (2020) Cement Concr. Compos., 114, p. 103772
dc.relation.referencesWalker, R., Pavía, S., Physical properties and reactivity of pozzolans, and their influence on the properties of lime–pozzolan pastes (2011) Mater. Struct., 44, pp. 1139-1150
dc.relation.referencesPeter, C.H., Lea's Chemistry of Cement and Concrete (2004), https://www.elsevier.com/books/leas-chemistry-of-cement-and-concrete/hewlett/978-0-7506-6256-7, fourth ed. Elsevier Amsterdam, The Netherlands (Accessed 12 May 2020)
dc.relation.referencesKurdowski, W., Cement and Concrete Chemistry (2014), Springer Netherlands Dordrecht, Netherlands
dc.relation.referencesTaylor, H.F.W., Cement Chemistry (1997), second ed. Thomas Telford London
dc.relation.referencesWang, Z., Park, S., Khalid, H.R., Lee, H.K., Hydration properties of alkali-activated fly ash/slag binders modified by MgO with different reactivity (2021) J. Build. Engin., 44, p. 103252
dc.relation.referencesNath, P., Sarker, P., Effect of fly ash on the durability properties of high strength concrete (2011) Proced. Engin., 14, pp. 1149-1156
dc.relation.referencesSong, H., Jeong, Y., Bae, S., Jun, Y., Yoon, S., Eun Oh, J., A study of thermal decomposition of phases in cementitious systems using HT-XRD and TG (2018) Construct. Build. Mater., 169, pp. 648-661
dc.relation.referencesDing, W., Xu, W., Dong, P., Liu, Y., Shiotani, T., Roles of CSH gel in the microstructure and piezoelectric properties variation of cement-based piezoelectric ceramic composite (2022) Mater. Lett., 306, p. 130952
dc.relation.referencesGolewski, G.L., Szostak, B., Strengthening the very early-age structure of cementitious composites with coal fly ash via incorporating a novel nanoadmixture based on C-S-H phase activators (2021) Construct. Build. Mater., 312, p. 125426
dc.relation.referencesReddy, K.C., Subramaniam, K.V.L., Investigation on the roles of solution-based alkali and silica in activated low-calcium fly ash and slag blends (2021) Cement Concr. Compos., 123, p. 104175
dc.relation.referencesTraven, K., Češnovar, M., Škapin, S.D., Ducman, V., High temperature resistant fly-ash and metakaolin-based alkali-activated foams (2021) Ceram. Int., 47, pp. 25105-25120
dc.relation.referencesDong, X., Ma, L.Q., Li, Y., Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing (2011) J. Hazard Mater., 190, pp. 909-915
dc.relation.referencesKhalil, U., Bilal Shakoor, M., Ali, S., Rizwan, M., Nasser Alyemeni, M., Wijaya, L., Adsorption-reduction performance of tea waste and rice husk biochars for Cr(VI) elimination from wastewater (2020) J. Saud. Chem. Soci., 24, pp. 799-810
dc.relation.referencesVieira, F.R., Romero Luna, C.M., Arce, G.L.A.F., Ávila, I., Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk (2020) Biomass Bioenergy, 132, p. 105412
dc.relation.referencesClaoston, N., Samsuri, A.W., Ahmad Husni, M.H., Mohd Amran, M.S., Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars (2014) Waste Manag. Res., 32, pp. 331-339
dc.relation.referencesMohammed, Z., Jeelani, S., Rangari, V., Low temperature plasma treatment of rice husk derived hybrid silica/carbon biochar using different gas sources (2021) Mater. Lett., 292, p. 129678
dc.relation.referencesKupwade-Patil, K., Palkovic, S.D., Bumajdad, A., Soriano, C., Büyüköztürk, O., Use of silica fume and natural volcanic ash as a replacement to Portland cement: micro and pore structural investigation using NMR, XRD, FTIR and X-ray microtomography (2018) Construct. Build. Mater., 158, pp. 574-590
dc.relation.referencesMoraes, J.C.B., Akasaki, J.L., Melges, J.L.P., Monzó, J., Borrachero, M.V., Soriano, L., Payá, J., Tashima, M.M., Assessment of sugar cane straw ash (SCSA) as pozzolanic material in blended Portland cement: microstructural characterization of pastes and mechanical strength of mortars (2015) Construct. Build. Mater., 94, pp. 670-677
dc.relation.referencesYılmaz, B., Olgun, A., Studies on cement and mortar containing low-calcium fly ash, limestone, and dolomitic limestone (2008) Cement Concr. Compos., 30, pp. 194-201
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem