Mostrar el registro sencillo del ítem

dc.contributor.authorBaldasso V
dc.contributor.authorLubarsky H
dc.contributor.authorPichel N
dc.contributor.authorTurolla A
dc.contributor.authorAntonelli M
dc.contributor.authorHincapie M
dc.contributor.authorBotero L
dc.contributor.authorReygadas F
dc.contributor.authorGaldos-Balzategui A
dc.contributor.authorByrne J.A
dc.contributor.authorFernandez-Ibañez P.
dc.date.accessioned2022-09-14T14:34:20Z
dc.date.available2022-09-14T14:34:20Z
dc.date.created2021
dc.identifier.issn431354
dc.identifier.urihttp://hdl.handle.net/11407/7619
dc.descriptionUVC disinfection has been recognised by the WHO as an effective disinfection treatment to provide decentralized potable water. Under real conditions there are still unknowns that limit this application including the influence of suspended solids and natural organic matter. This work aims to investigate the influence of two key parameters, suspended solids and natural organic matter, on the efficiency of UVC disinfection of surface water to achieve the drinking water quality requirements established by the WHO for point of use (POU) technologies. Kaolinite (turbidity agent) and humic acids (HA, model of organic matter) were used in a factorial design of experiments (Turbidity from 0 to 5 NTU, and HA from 0 to 3.5 mg/L) to investigate their effect on UVC inactivation of MS2 phage in surface water. A collimated beam (12 W) and a commercial UVC disinfection flow system (16 W) designed to provide drinking water at households were used. The UVC flow system both in the laboratory and in the field was able to achieve the reduction requirements established by WHO (LRV >3.5 for all tested conditions), confirming the good performance of the studied UVC disinfection system. The results found in the lab were used to establish a numerical model that predicts the disinfection rate constant as a function of water turbidity and transmittance at 254 nm (confidence level>95%). The model permitted to elucidate the critical effect of low concentrations of HA in reducing the inactivation rate by 40% for 3.5 mg/L-HA compared with 0, the non-significant detrimental effect of turbidity lower than 5 NTU, and the lack of synergistic effects between both parameters at these levels. The UVC flow system was also tested in the field, in Tzabalho, Chiapas (Mexico), and Antioquia (Colombia), with spiked MS2 into natural surface water. This investigation opens a potential application to monitor the performance of UVC systems with surface water by monitoring transmittance at 254 nm as a tool to control UVC domestic systems to deliver safe drinking water in a household without the need of expensive and laborious biological monitoring tools. © 2021eng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85112696534&doi=10.1016%2fj.watres.2021.117496&partnerID=40&md5=c83f133e1d2f9f445fc80fd2768a13cf
dc.sourceWater Research
dc.titleUVC inactivation of MS2-phage in drinking water – Modelling and field testing
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.type.spaArtículo
dc.identifier.doi10.1016/j.watres.2021.117496
dc.subject.keywordDisinfectioneng
dc.subject.keywordExperimental factorial designeng
dc.subject.keywordHumic acidseng
dc.subject.keywordKaoliniteeng
dc.subject.keywordMS2-bacteriophageeng
dc.relation.citationvolume203
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationBaldasso, V., Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, Milano, 20133, Italy
dc.affiliationLubarsky, H., Nanotechnology and Integrated BioEngineering Centre, School of Engineering, Ulster University, Northern Ireland, BT37 0QB, United Kingdom
dc.affiliationPichel, N., Nanotechnology and Integrated BioEngineering Centre, School of Engineering, Ulster University, Northern Ireland, BT37 0QB, United Kingdom
dc.affiliationTurolla, A., Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, Milano, 20133, Italy
dc.affiliationAntonelli, M., Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza Leonardo da Vinci 32, Milano, 20133, Italy
dc.affiliationHincapie, M., School of Engineering, University of Medellin, Ctra 87, 30-65, Medellin, 050026, Colombia
dc.affiliationBotero, L., School of Engineering, University of Medellin, Ctra 87, 30-65, Medellin, 050026, Colombia
dc.affiliationReygadas, F., Fundación Cántaro Azul, Calzada Daniel Sarmiento 19, Los Alcanfores, 29246 San Cristóbal de las Casas, Chiapas, Mexico
dc.affiliationGaldos-Balzategui, A., Fundación Cántaro Azul, Calzada Daniel Sarmiento 19, Los Alcanfores, 29246 San Cristóbal de las Casas, Chiapas, Mexico
dc.affiliationByrne, J.A., Nanotechnology and Integrated BioEngineering Centre, School of Engineering, Ulster University, Northern Ireland, BT37 0QB, United Kingdom
dc.affiliationFernandez-Ibañez, P., Nanotechnology and Integrated BioEngineering Centre, School of Engineering, Ulster University, Northern Ireland, BT37 0QB, United Kingdom
dc.relation.referencesAbbt-Braun, G., Lankes, U., Frimmel, F.H., Structural characterization of aquatic humic substances - the need for a multiple method approach (2004) Aquatic Sci., 66, pp. 151-170
dc.relation.referencesAdams, M.H., Bacteriophages (1959), Interscience Publisher Inc New York
dc.relation.referencesBatch, L.F., Schulz, C.R., Linden, K.G., Evaluating water quality effects on UV disinfection of MS2 coliphage (2004) J. AWWA, 96 (7), pp. 75-87
dc.relation.referencesBeck, S.E., Rodriguez, R.A., Hawkins, M.A., Hargy, T.M., Larason, T.C., Linden, K.G., Comparison of UV-induced inactivation and RNA damage in MS2 phage across the germicidal UV spectrum (2016) Appl. Environ. Microbiol.
dc.relation.referencesBeck, S.E., Wright, H.B., Hargy, T.M., Larason, T.C., Linden, K.G., Action spectra for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems (2015) Water Res., 70 (1), pp. 27-37
dc.relation.referencesBolton, J.R., Linden, K.G., Standardization of methods for fluence (UV Dose) determination in bench-scale UV experiments (2003) J. Environ. Eng., 129 (3), p. 209
dc.relation.referencesBolton, C.A., Cotton, J.R., The ultraviolet disinfection handbook (2008) Am. Water Work. Assoc.
dc.relation.referencesBrownell, S.A., Chakrabarti, A.R., Kaser, F.M., Connelly, L.G., Peletz, R.L., Reygadas, F., Lang, M.J., Nelson, K.L., Assessment of a low-cost, point-of-use, ultraviolet water disinfection technology (2008) J. Water Health, 6 (1), pp. 53-65
dc.relation.referencesCantwell, R.E., Hofmann, R., Templeton, M.R., Interactions between humic matter and bacteria when disinfecting water with UV light (2008) J. Appl. Microbiol., 105 (1), pp. 25-35
dc.relation.references(2006), https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=600006T3.txt, Environmental Protection Agency - Office of Water Ultraviolet disinfection guidance manual for the final long term 2 enhanced surface water treatment rule. [Online]
dc.relation.referencesCurtis, V., (2016) Results of Round I of the WHO International Scheme to Evaluate Household Water Treatment Technologies chlo, , World Heal. Organ
dc.relation.referencesFilella, M., Freshwaters: which NOM matters? (2019) Environ. Chem. Lett., 7 (1), pp. 21-35
dc.relation.referencesHijnen, W.A.M., Beerendonk, E.F., Medema, G.J., Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review (2005) Water Research, 40 (1), pp. 3-22
dc.relation.referencesLeenheer, J.A., Croué, J.P., Characterising dissolved aquatic organic matter - understanding the unknown structures is key to better tratment of drinking water (2003) Environ. Sci. Technol., 37 (1), pp. 18-26
dc.relation.referencesLi, C., Sun, Z., Zhang, W., Yu, C., Zheng, S., Highly efficient g-C3N4/TiO2/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and S. aureus (2018) Appl. Catal. B: Environ., 220, pp. 272-282
dc.relation.referencesLoge, F.J., Bourgeous, K., Emerick, R.W., Darby, J.L., Variations in wastewater quality parameters influencing UV disinfection performance: relative impact of filtration (2001) J. Environ. Eng., 127 (9), p. 832
dc.relation.referencesLui, G.Y., Roser, D., Corkish, R., Ashbolt, N.J., Stuetz, R., Point-of-use water disinfection using ultraviolet and visible light-emitting diodes (2016) Sci. Total Environ., 553, pp. 626-635
dc.relation.referencesMcGuigan, K.G., Conroy, R.M., Mosler, H.J., du Preez, M., Ubomba-Jaswa, E., Fernandez-Ibañez, P., Solar water disinfection (SODIS): A review from bench-top to roof-top (2012) J. Hazard. Mat., 235-236, pp. 29-46
dc.relation.referencesPark, G.W., Linden, K.G., Sobsey, M.D., Inactivation of murine norovirus, feline calicivirus and echovirus 12 as surrogates for human norovirus (NoV) and coliphage (F+) MS2 by ultraviolet light (254 nm) and the effect of cell association on UV inactivation (2011) Lett. Appl. Microbiol., 52 (2), pp. 162-167
dc.relation.referencesRhann, R.O., Potassium Iodide as a Chemical Actinometer for 254 nm Radiation: Use of Iodate as an Electron Scavenger (1997) Photochem. Photobiol.
dc.relation.referencesRodríguez, F.J., Núñez, L.A., Characterization of aquatic humic substances (2011) Water Environ. J., 25 (2), pp. 163-170
dc.relation.referencesSobsey, M.D., Stauber, C.E., Casanova, L.M., Brown, J.M., Elliott, M.A., Point of use household drinking water filtration: A practical, effective solution for providing sustained access to safe drinking water in the developing world (2008) Environ. Sci. Technol., 42 (12), pp. 4261-4267
dc.relation.referencesSong, K., Mohseni, M., Taghipour, F., Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: a review (2016) Water Res., 94, pp. 341-349
dc.relation.referencesTempleton, M.R., Hofmann, R., Andrews, R.C., UV inactivation of humic-coated bacteriophages MS2 and T4 in water (2006) J. Environ. Eng. Sci., 5, pp. 537-543
dc.relation.references1 in 3 people globally do not have access to safe drinking water (2019) Unicef-Who
dc.relation.referencesTransforming our world: the 2030 agenda for sustainable development (2018) A New Era in Global Health
dc.relation.referencesWater and Climate Change (2020), https://www.unwater.org/world-water-development-report-2020-water-and-climate-change/, 2020. [Available]
dc.relation.referencesVilhunen, S., Särkkä, H., Sillanpää, M., Ultraviolet light-emitting diodes in water disinfection (2009) Environ. Sci. Pollut. Res., 16, pp. 439-442
dc.relation.referencesWatson, H.E., A note on the variation of the rate of disinfection with change in the concentration of the disinfectant (1908) Epidemiol. Infect., 8 (4), pp. 536-542
dc.relation.referencesResults of round I of the WHO international scheme to evaluate household water treatment technologies (2016), WHO Geneva
dc.relation.referencesThe United Nations World Water Development Report 2015: Water for a Sustainable World, Facts and Figures (2015) UN Water Reports
dc.relation.referencesWHO International Scheme to Evaluate Household Water Treatment Technologies Harmonized Testing Protocol: Technology Non-Specific (2014), www.who.int/entity/household_water/scheme/HarmonizedTestProtocol.pdf?ua=1, Report no. 2015, 1–5, 2014. [Online]
dc.relation.referencesYounis, B.A., Mahoney, L.E., Yao, S., Field evaluation of a novel UV water disinfection system for use in underserved rural communities (2019) Water Environ. Res., 91 (1), pp. 75-82
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem