Show simple item record

dc.contributor.authorVera J.F
dc.contributor.authorSánchez Zuleta C.C
dc.contributor.authorRueda M.D.M.
dc.date.accessioned2023-10-24T19:23:52Z
dc.date.available2023-10-24T19:23:52Z
dc.date.created2023
dc.identifier.issn9622802
dc.identifier.urihttp://hdl.handle.net/11407/7876
dc.description.abstractSurvey calibration is a widely used method to estimate the population mean or total score of a target variable, particularly in medical research. In this procedure, auxiliary information related to the variable of interest is used to recalibrate the estimation weights. However, when the auxiliary information includes qualitative variables, traditional calibration techniques may be not feasible or the optimisation procedure may fail. In this article, we propose the use of linear calibration in conjunction with a multidimensional scaling-based set of continuous, uncorrelated auxiliary variables along with a suitable metric in a distance-based regression framework. The calibration weights are estimated using a projection of the auxiliary information on a low-dimensional Euclidean space. The approach becomes one of the linear calibration with quantitative variables avoiding the usual computational problems in the presence of qualitative auxiliary information. The new variables preserve the underlying assumption in linear calibration of a linear relationship between the auxiliary and target variables, and therefore the optimal properties of the linear calibration method remain true. The behaviour of this approach is examined using a Monte Carlo procedure and its value is illustrated by analysing real data sets and by comparing its performance with that of traditional calibration procedures. © The Author(s) 2023.eng
dc.language.isoeng
dc.publisherSAGE Publications Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85148528583&doi=10.1177%2f09622802231151211&partnerID=40&md5=08c3f6c2177f5432a16eb755d2aaf73c
dc.sourceStat. Methods Med. Res.
dc.sourceStatistical Methods in Medical Researcheng
dc.subjectAuxiliary informationeng
dc.subjectCalibration weightseng
dc.subjectCategorical variableseng
dc.subjectDistance-based regressioneng
dc.subjectMultidimensional scalingeng
dc.subjectSurvey samplingeng
dc.titleA unified approach based on multidimensional scaling for calibration estimation in survey sampling with qualitative auxiliary informationeng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1177/09622802231151211
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationVera, J.F., Department of Statistics and O.R, University of Granada, Granada, Spain
dc.affiliationSánchez Zuleta, C.C., Faculty of Basic Sciences, University of Medellin, Medellin, Colombia
dc.affiliationRueda, M.D.M., Department of Statistics and O.R, University of Granada, Granada, Spain
dc.relation.referencesPfeffermann, D., The use of sampling weights for survey data analysis (1996) Stat Methods Med Res, 5, pp. 239-261
dc.relation.referencesDeming, W.E., Stephan, F.F., On a least squares adjustment of a sampled frequency table when the expected marginal totals are known (1940) Ann Math Stat, 11, pp. 427-444
dc.relation.referencesHuang, E.T., Fuller, W.A., Nonnegative regression estimation for sample survey data. In: Proceedings of the Social Statistics Section
dc.relation.references1978. p. 300–305
dc.relation.referencesDeville, J.C., Särndal, C.E., Calibration estimators in survey sampling (1992) J Am Stat Assoc, 87, pp. 376-382
dc.relation.referencesHorvitz, D.G., Thompson, D.J., A generalization of sampling without replacement from a finite universe (1952) J Am Stat Assoc, 47, pp. 663-685
dc.relation.referencesRueda, M., Martínez, S., Martínez, H., Estimation of the distribution function with calibration methods (2007) J Stat Plan Inference, 137, pp. 435-448
dc.relation.referencesRueda, M., Martínez-Puertas, S., Martínez-Puertas, H., Calibration methods for estimating quantiles (2007) Metrika, 66, pp. 355-371
dc.relation.referencesMdM, R., Comments on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem (2019) Test, 28, pp. 1077-1081
dc.relation.referencesDevaud, D., Tillé, Y., Deville and Särndal’s calibration: revisiting a 25-years-old successful optimization problem (2019) Test, 28, pp. 1033-1065
dc.relation.referencesSärndal, C.E., The calibration approach in survey theory and practice (2007) Surv Methodol, 33, pp. 99-119
dc.relation.referencesBeaumont, J.F., Rao, J.N.K., Comments on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem (2019) Test, 28, pp. 1071-1076
dc.relation.referencesDeville, J.C., Särndal, C.E., Sautory, O., Generalized raking procedures in survey sampling (1993) J Am Stat Assoc, 88, pp. 1013-1020
dc.relation.referencesZhang, L.C., Post-stratification and calibration-A synthesis (2000) Am Stat, 54, pp. 178-184
dc.relation.referencesRanalli, M.G., Arcos, A., Rueda, M., Calibration estimation in dual-frame surveys (2016) Stat Methods Appl, 25, pp. 321-349
dc.relation.referencesWu, C., Thompson, M.E., (2020) Sampling Theory and Practice, , ICSA Book Series Statistics, Cham, Springer International Publishing
dc.relation.referencesKalton, G., Flores-Cervantes, I., Weighting methods (2003) J Off Stat, 19, pp. 81-97
dc.relation.referencesEstevao, V.M., Särndal, C.E., Survey estimates by calibration on complex auxiliary information (2006) International Statistical Review / Revue Internationale de Statistique, 74, pp. 127-147
dc.relation.referencesDetrano, R.C., Jánosi, A., Steinbrunn, W., International application of a new probability algorithm for the diagnosis of coronary artery disease (1989) Am J Cardiol, 64, pp. 304-310
dc.relation.referencesSoriano, F., https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction, Heart Failure Prediction Dataset. Retrieved December 20
dc.relation.references2020, SEP
dc.relation.referencesGuggemos, F., Tillé, Y., Penalized calibration in survey sampling: design-based estimation assisted by mixed models (2010) J Stat Plan Inference, 140, pp. 3199-3212
dc.relation.referencesNascimento Silva, P.L.D., Skinner, C.J., Variable selection for regression estimation in finite populations (1997) Surv Methodol, 23, pp. 23-32
dc.relation.referencesChauvet, G., Goga, C., Asymptotic efficiency of the calibration estimator in a high-dimensional data setting (2022) J Stat Plan Inference, 217, pp. 177-187
dc.relation.referencesBrick, J.M., Kalton, G., Handling missing data in survey research (1996) Stat Methods Med Res, 5, pp. 215-238
dc.relation.referencesClark, R.G., Chambers, R.L., Adaptive calibration for prediction of finite population totals (2008) Sur Methodol, 34, pp. 163-172
dc.relation.referencesMcconville, K.S., Breidt Jay, F., Lee, T.C.M., Model-assisted survey regression estimation with the lasso (2017) J Surv Stat Methodol, 5, pp. 131-158
dc.relation.referencesBeaumont, J.F., Bocci, C., Another look at ridge calibration (2008) Metron, 66, pp. 5-20
dc.relation.referencesBarranco-Chamorro, I., Jiménez-Gamero, M., Mayor-Gallego, J.A., A case-deletion diagnostic for penalized calibration estimators and BLUP under linear mixed models in survey sampling (2005) Comput Stat Data Anal, 87, pp. 18-33
dc.relation.referencesCardot, H., Goga, C., Shehzad, M.A., Calibration and partial calibration on principal components when the number of auxiliary variables is large (2017) Stat Sin, 27, pp. 243-260
dc.relation.referencesBorg, I., Groenen, P.J.F., (2005) Modern Multidimensional Scaling. Theory and Applications, , Second ed, Springer, New York
dc.relation.referencesSärndal, C.E., Lundström, S., (2005) Estimation in surveys with nonresponse, , First ed, Hoboken, NY: John Wiley & Sons, Ltd
dc.relation.referencesDubreuil, G., Tremblay, J., The use of generalized raking procedures to improve the quality of small domain estimation. In:
dc.relation.references2002. p. 293–298
dc.relation.referencesCuadras, C.M., Arenas, C., A distance based regression model for prediction with mixed data (1990) Commun Stat - Theory Methods, 19, pp. 2261-2279
dc.relation.referencesGower, J.C., A general coefficient of similarity and some of its properties (1971) Biometrics, 27, pp. 857-871
dc.relation.referencesVera, J.F., del Val, E.B., In: Studies Classification, Data Analysis, and Knowledge Organization. Springer Science and Business Media Deutschland GmbH
dc.relation.references2020. p. 385–397
dc.relation.referencesMardia, K., J, B., Kent, J., (1979) Multivariate Analysis, , First ed, London: Academic Press
dc.relation.referencesIsaki, C.T., Fuller, W.A., Survey design under the regression superpopulation model (1982) J Am Stat Assoc, 77, pp. 89-96
dc.relation.referencesGodambe, V.P., Thompson, M.E., Parameters of superpopulation and survey population: their relationship and estimation (1986) Int Stat Rev, 54, pp. 127-138
dc.relation.referencesLesage, E., The use of estimating equations to perform a calibration on complex parameters (2011) Surv Methodol, 37, pp. 103-108
dc.relation.referencesWu, C., Sitter, R.R., A model-calibration approach to using complete auxiliary information from survey data (2001) J Am Stat Assoc, 96, pp. 185-193
dc.relation.referencesVera, J.F., de Rooij, M., Heiser, W.J., A latent class distance association model for cross-classified data with a categorical response variable (2014) Br J Math Stat Psychol, 67, pp. 514-540
dc.relation.referencesVera, J.F., De Rooij, M., A latent block distance-association model for profile by profile cross-classified categorical data (2020) Multivariate Behav Res, 55, pp. 329-343
dc.relation.referencesVera, J.F., Distance-based logistic model for cross-classified categorical data (2022) Br J Math Stat Psychol, 75, pp. 466-492
dc.relation.referencesVera, J.F., Macías, R., Heiser, W.J., A latent class multidimensional scaling model for two-way one-mode continuous rating dissimilarity data (2009) Psychometrika, 74, pp. 297-315
dc.relation.referencesVera, J.F., Macías, R., On the behaviour of K-means clustering of a dissimilarity matrix by means of full multidimensional scaling (2021) Psychometrika, 86, pp. 489-513
dc.relation.referencesRueda, M., Sánchez-Borrego, I., Arcos, A., Model-calibration estimation of the distribution function using nonparametric regression (2009) Metrika, 71, pp. 33-44
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record