Mostrar el registro sencillo del ítem

dc.contributor.authorRocha-Meneses L
dc.contributor.authorLuna-delRisco M
dc.contributor.authorGonzález C.A
dc.contributor.authorMoncada S.V
dc.contributor.authorMoreno A
dc.contributor.authorSierra-Del Rio J
dc.contributor.authorCastillo-Meza L.E.
dc.date.accessioned2023-10-24T19:23:53Z
dc.date.available2023-10-24T19:23:53Z
dc.date.created2023
dc.identifier.issn19961073
dc.identifier.urihttp://hdl.handle.net/11407/7881
dc.description.abstractThe escalating global energy demand, driven by heavy reliance on fossil fuels, worsens environmental degradation and triggers socio-economic shifts in extraction and refinery hubs. In Colombia, the energy matrix is predominantly fossil-based (76%), with hydroelectric power accounting for 70% of electricity generation. However, renewable energy sources only contribute 2% to the national energy mix. To reduce emissions by 20% by 2030, Colombia has presented an energy transition roadmap. The need for bioenergy production in Colombia arises from the residual biomass availability, the potential to provide sustainable energy access, and the potential to mitigate climate change impacts, while addressing energy poverty and enhancing energy security. This study presents an overview of biogas production in Colombia, emphasizing the need for financial resources to overcome barriers. Policy incentives, awareness campaigns, and research and development play a vital role in fostering social acceptance, technology adoption, and optimizing biogas production processes. Collaborative efforts among the government, private sector, and local communities are recommended to ensure wide-scale adoption of biogas, promoting economic, social, and environmental sustainability. By enabling informed decision-making, this research supports the transition to renewable energy sources and the achievement of sustainable development goals (SDGs), with a particular focus on bioenergy. The aim of this study is to explore the challenges and opportunities associated with biogas production in Colombia, including technical, economic, social, and environmental aspects, and provide recommendations for promoting its sustainable implementation and widespread adoption in the country. © 2023 by the authors.eng
dc.language.isoeng
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85168785509&doi=10.3390%2fen16165901&partnerID=40&md5=8ce747b177305c8b5bdd72ab1ffb90ff
dc.sourceEnergies
dc.sourceEnergieseng
dc.subjectAnaerobic digestioneng
dc.subjectBioeconomyeng
dc.subjectBioenergyeng
dc.subjectBiogaseng
dc.subjectSDGeng
dc.subjectSouth Americaeng
dc.subjectZero-wasteeng
dc.titleAn Overview of the Socio-Economic, Technological, and Environmental Opportunities and Challenges for Renewable Energy Generation from Residual Biomass: A Case Study of Biogas Production in Colombiaeng
dc.typeReview
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería en Energíaspa
dc.type.spaRevisión
dc.identifier.doi10.3390/en16165901
dc.relation.citationvolume16
dc.relation.citationissue16
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationRocha-Meneses, L., Renewable and Sustainable Energy Research Center, Technology Innovation Institute (TII), Masdar City, P.O. Box 9639, Abu Dhabi, United Arab Emirates
dc.affiliationLuna-delRisco, M., Programa de Ingeniería en Ingeniería en Energía, Grupo de Investigación en Ingeniería en Energía—GRINEN, Universidad de Medellin, Medellín, 050034, Colombia
dc.affiliationGonzález, C.A., Programa de Ingeniería en Ingeniería en Energía, Grupo de Investigación en Ingeniería en Energía—GRINEN, Universidad de Medellin, Medellín, 050034, Colombia
dc.affiliationMoncada, S.V., Programa de Ingeniería en Ingeniería en Energía, Grupo de Investigación en Ingeniería en Energía—GRINEN, Universidad de Medellin, Medellín, 050034, Colombia
dc.affiliationMoreno, A., Grupo de Química de Recursos Energéticos y Medio Ambiente QUIREMA, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, 050010, Colombia
dc.affiliationSierra-Del Rio, J., Department of Mechatronics Engineering-MATyER, Instituto Tecnológico Metropolitano, Medellín, 050536, Colombia
dc.affiliationCastillo-Meza, L.E., Department of Environmental Engineering, Universidad Pontificia Bolivariana—Seccional Bucaramanga, Bucaramanga, 680002, Colombia
dc.relation.referencesMajeed, M.T., Luni, T., Tahir, T., Growing Green through Biomass Energy Consumption: The Role of Natural Resource and Globalization in a World Economy (2022) Environ. Sci. Pollut. Res, 29, pp. 33657-33673. , 35028836
dc.relation.referencesPandyaswargo, A.H., Wibowo, A.D., Onoda, H., Socio-Techno-Economic Assessment to Design an Appropriate Renewable Energy System for Remote Agricultural Communities in Developing Countries (2022) Sustain. Prod. Consum, 31, pp. 492-511
dc.relation.referencesEscalante Hernández, H., Orduz Prada, J., Zapata Lesmes, H.J., Cardona Ruiz, M.C., Duarte Ortega, M., (2010) Atlas del Potencial Energético de la Biomasa Residual en Colombia, , Unidad de Planeación Minero Energética, Bogotá, Colombia
dc.relation.referencesUPME Colombia Ley 1715 de 2014 (2014) Normatividad-UPME, 13. , Unidad de Planeación Minero Energética, Bogotá, Colombia
dc.relation.referencesRincón-Velásquez, N.Y., Castiblanco-Rozo, C., Políticas y Normas Sobre Ingeniería en Energías Renovables para el Desarrollo de Biogás en Colombia. Una Revisión (2021) Gestión Ambiente, 24, p. 98868
dc.relation.referencesGarfí, M., Castro, L., Montero, N., Escalante, H., Ferrer, I., Evaluating Environmental Benefits of Low-Cost Biogas Digesters in Small-Scale Farms in Colombia: A Life Cycle Assessment (2019) Bioresour. Technol, 274, pp. 541-548. , 30562711
dc.relation.referencesMendieta, O., Castro, L., Vera, E., Rodríguez, J., Escalante, H., Toward the Adoption of Anaerobic Digestion Technology through Low-Cost Biodigesters: A Case Study of Non-Centrifugal Cane Sugar Producers in Colombia (2021) Water, 13
dc.relation.referencesLuna-Del Risco, M., Vásquez, A.J., Zea Fernández, J.S., Marín, E., González, C.A., Vargas, A.C., Mejías Brizuela, N.Y., Biogas Production from the Specialized Dairy Farming and Porcine Subsectors in Antioquia, Colombia: Theoretical and Technical-Energy Potential Approach (2022) Agron. Res, 20, pp. 281-301
dc.relation.referencesDurán Contreras, M., Sequeda Barros, R., Zapata, J., Vanegas Chamorro, M., Albis Arrieta, A., A Look to the Biogas Generation from Organic Wastes in Colombia (2020) Int. J. Energy Econ. Policy, 10, pp. 248-254
dc.relation.referencesTavera-Ruiz, C., Martí-Herrero, J., Mendieta, O., Jaimes-Estévez, J., Gauthier-Maradei, P., Azimov, U., Escalante, H., Castro, L., Current Understanding and Perspectives on Anaerobic Digestion in Developing Countries: Colombia Case Study (2023) Renew. Sustain. Energy Rev, 173, p. 113097
dc.relation.referencesGonzalez-Salazar, M.A., Venturini, M., Poganietz, W.R., Finkenrath, M., Kirsten, T., Acevedo, H., Spina, P.R., Development of a Technology Roadmap for Bioenergy Exploitation Including Biofuels, Waste-to-Energy and Power Generation & CHP (2016) Appl. Energy, 180, pp. 338-352
dc.relation.referencesGarfí, M., Martí-Herrero, J., Garwood, A., Ferrer, I., Household Anaerobic Digesters for Biogas Production in Latin America: A Review (2016) Renew. Sustain. Energy Rev, 60, pp. 599-614
dc.relation.referencesJiménez Vásquez, A.F., (2021) Atlas Del Potencial Técnico-Energético Aprovechable Por Digestión Anaerobia de La Biomasa Residual Pecuaria Para Los Subsectores Porcícola y Ganadería de Leche Especializada En El Departamento de Antioquia, , https://repository.udem.edu.co/bitstream/handle/11407/6604/T_MIU_504.pdf?sequence=1&isAllowed=y, Available online
dc.relation.referencesDuarah, P., Haldar, D., Patel, A.K., Dong, C.D., Singhania, R.R., Purkait, M.K., A Review on Global Perspectives of Sustainable Development in Bioenergy Generation (2022) Bioresour. Technol, 348, p. 126791
dc.relation.referencesAngulo-Mosquera, L.S., Alvarado-Alvarado, A.A., Rivas-Arrieta, M.J., Cattaneo, C.R., Rene, E.R., García-Depraect, O., Production of Solid Biofuels from Organic Waste in Developing Countries: A Review from Sustainability and Economic Feasibility Perspectives (2021) Sci. Total Environ, 795, p. 148816
dc.relation.referencesCremonez, P.A., Feroldi, M., Feiden, A., Gustavo Teleken, J., José Gris, D., Dieter, J., De Rossi, E., Antonelli, J., Current Scenario and Prospects of Use of Liquid Biofuels in South America (2015) Renew. Sustain. Energy Rev, 43, pp. 352-362
dc.relation.referencesUllah, K., Kumar Sharma, V., Dhingra, S., Braccio, G., Ahmad, M., Sofia, S., Assessing the Lignocellulosic Biomass Resources Potential in Developing Countries: A Critical Review (2015) Renew. Sustain. Energy Rev, 51, pp. 682-698
dc.relation.referencesTechnology Industry (2022) China Statistical Yearbooks Database, , China Statistics Press, Beijing, China
dc.relation.referencesTheuerl, S., Herrmann, C., Heiermann, M., Grundmann, P., Landwehr, N., Kreidenweis, U., Prochnow, A., The Future Agricultural Biogas Plant in Germany: A Vision (2019) Energies, 12
dc.relation.referencesNiskanen, J., Magnusson, D., Understanding Upscaling and Stagnation of Farm-Based Biogas Production in Sweden through Transitional and Farming Logics (2021) J. Clean. Prod, 279, p. 123235
dc.relation.referencesCanabarro, N.I., Silva-Ortiz, P., Nogueira, L.A.H., Cantarella, H., Maciel-Filho, R., Souza, G.M., Sustainability Assessment of Ethanol and Biodiesel Production in Argentina, Brazil, Colombia, and Guatemala (2023) Renew. Sustain. Energy Rev, 171, p. 113019
dc.relation.referencesKapoor, R., Ghosh, P., Kumar, M., Sengupta, S., Gupta, A., Kumar, S.S., Vijay, V., Pant, D., Valorization of Agricultural Waste for Biogas Based Circular Economy in India: A Research Outlook (2020) Bioresour. Technol, 304, p. 123036
dc.relation.referencesTamburini, E., Gaglio, M., Castaldelli, G., Fano, E.A., Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy (2020) Sustainability, 12
dc.relation.referencesCalvin, K., Cowie, A., Berndes, G., Arneth, A., Cherubini, F., Portugal-Pereira, J., Grassi, G., Popp, A., Bioenergy for Climate Change Mitigation: Scale and Sustainability (2021) GCB Bioenergy, 13, pp. 1346-1371
dc.relation.referencesFoong, S.Y., Chan, Y.H., Loy, A.C.M., How, B.S., Tamothran, A.M., Yip, A.J.K., Liew, R.K., Lam, S.S., The Nexus between Biofuels and Pesticides in Agroforestry: Pathways toward United Nations Sustainable Development Goals (2022) Environ. Res, 214, p. 113751. , 35753369
dc.relation.referencesPuzzolo, E., Pope, D., Stanistreet, D., Rehfuess, E.A., Bruce, N.G., Clean Fuels for Resource-Poor Settings: A Systematic Review of Barriers and Enablers to Adoption and Sustained Use (2016) Environ. Res, 146, pp. 218-234. , 26775003
dc.relation.referencesHafid, H.S., Omar, F.N., Abdul Rahman, N., Wakisaka, M., Innovative Conversion of Food Waste into Biofuel in Integrated Waste Management System (2021) Crit. Rev. Environ. Sci. Technol, 52, pp. 3453-3492
dc.relation.referencesBourdin, S., Colas, M., Raulin, F., Understanding the Problems of Biogas Production Deployment in Different Regions: Territorial Governance Matters Too (2019) J. Environ. Plan. Manag, 63, pp. 1655-1673
dc.relation.referencesTucho, G.T., Moll, H.C., Schoot Uiterkamp, A.J.M., Nonhebel, S., Problems with Biogas Implementation in Developing Countries from the Perspective of Labor Requirements (2016) Energies, 9
dc.relation.referencesObaideen, K., Abdelkareem, M.A., Wilberforce, T., Elsaid, K., Sayed, E.T., Maghrabie, H.M., Olabi, A.G., Biogas Role in Achievement of the Sustainable Development Goals: Evaluation, Challenges, and Guidelines (2022) J. Taiwan Inst. Chem. Eng, 131, p. 104207
dc.relation.referencesLohani, S.P., Dhungana, B., Horn, H., Khatiwada, D., Small-Scale Biogas Technology and Clean Cooking Fuel: Assessing the Potential and Links with SDGs in Low-Income Countries—A Case Study of Nepal (2021) Sustain. Energy Technol. Assess, 46, p. 101301
dc.relation.referencesPizarro-Loaiza, C.A., Antón, A., Torrellas, M., Torres-Lozada, P., Palatsi, J., Bonmatí, A., Environmental, Social and Health Benefits of Alternative Renewable Energy Sources. Case Study for Household Biogas Digesters in Rural Areas (2021) J. Clean. Prod, 297, p. 126722
dc.relation.referencesAbanades, S., Abbaspour, H., Ahmadi, A., Das, B., Ehyaei, M.A., Esmaeilion, F., El Haj Assad, M., Hmida, A., A Critical Review of Biogas Production and Usage with Legislations Framework across the Globe (2022) Int. J. Environ. Sci. Technol, 19, pp. 3377-3400
dc.relation.referencesBonaldo, C., Benefits of Blending Mandate in Sustainable Economies (2021) New Metropolitan Perspectives, 178, pp. 526-535. , Smart Innovation, Systems and Technologies, Springer, Cham, Switzerland
dc.relation.referencesLazaro, L.L.B., Giatti, L.L., Bermann, C., Giarolla, A., Ometto, J., Policy and Governance Dynamics in the Water-Energy-Food-Land Nexus of Biofuels: Proposing a Qualitative Analysis Model (2021) Renew. Sustain. Energy Rev, 149, p. 111384
dc.relation.referencesTakaes Santos, I., Confronting Governance Challenges of the Resource Nexus through Reflexivity: A Cross-Case Comparison of Biofuels Policies in Germany and Brazil (2020) Energy Res. Soc. Sci, 65, p. 101464
dc.relation.referencesBashir, M.A., Wu, S., Zhu, J., Krosuri, A., Khan, M.U., Ndeddy Aka, R.J., Recent Development of Advanced Processing Technologies for Biodiesel Production: A Critical Review (2022) Fuel Process. Technol, 227, p. 107120
dc.relation.referencesAmbaye, T.G., Vaccari, M., Bonilla-Petriciolet, A., Prasad, S., van Hullebusch, E.D., Rtimi, S., Emerging Technologies for Biofuel Production: A Critical Review on Recent Progress, Challenges and Perspectives (2021) J. Environ. Manag, 290, p. 112627. , 33991767
dc.relation.referencesZhang, J., Zhang, X., Yang, M., Singh, S., Cheng, G., Transforming Lignocellulosic Biomass into Biofuels Enabled by Ionic Liquid Pretreatment (2021) Bioresour. Technol, 322, p. 124522. , 33340950
dc.relation.referencesNaji, S.Z., Tye, C.T., Abd, A.A., State of the Art of Vegetable Oil Transformation into Biofuels Using Catalytic Cracking Technology: Recent Trends and Future Perspectives (2021) Process Biochem, 109, pp. 148-168
dc.relation.referencesAwogbemi, O., Von Kallon, D.V., Onuh, E.I., Aigbodion, V.S., An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications (2021) Energies, 14
dc.relation.referencesNarnaware, S.L., Panwar, N.L., Biomass Gasification for Climate Change Mitigation and Policy Framework in India: A Review (2022) Bioresour. Technol. Rep, 17, p. 100892
dc.relation.referencesJatoi, A.S., Abbasi, S.A., Hashmi, Z., Shah, A.K., Alam, M.S., Bhatti, Z.A., Maitlo, G., Usto, M.A., Recent Trends and Future Perspectives of Lignocellulose Biomass for Biofuel Production: A Comprehensive Review (2021) Biomass Convers. Biorefinery, 13, pp. 6457-6469
dc.relation.referencesMohamed, M., Tan, C.K., Fouda, A., Gad, M.S., Abu-Elyazeed, O., Hashem, A.F., Diesel Engine Performance, Emissions and Combustion Characteristics of Biodiesel and Its Blends Derived from Catalytic Pyrolysis of Waste Cooking Oil (2020) Energies, 13
dc.relation.referencesHoang, A.T., Ong, H.C., Fattah, I.M.R., Chong, C.T., Cheng, C.K., Sakthivel, R., Ok, Y.S., Progress on the Lignocellulosic Biomass Pyrolysis for Biofuel Production toward Environmental Sustainability (2021) Fuel Process. Technol, 223, p. 106997
dc.relation.referencesFimbres Weihs, G.A., Jones, J.S., Ho, M., Malik, R.H., Abbas, A., Meka, W., Fennell, P., Wiley, D.E., Life Cycle Assessment of Co-Firing Coal and Wood Waste for Bio-Energy with Carbon Capture and Storage—New South Wales Study (2022) Energy Convers. Manag, 273, p. 116406
dc.relation.referencesJha, S., Nanda, S., Acharya, B., Dalai, A.K., A Review of Thermochemical Conversion of Waste Biomass to Biofuels (2022) Energies, 15
dc.relation.referencesMa, X., Liu, F., Helian, Y., Li, C., Wu, Z., Li, H., Chu, H., Lu, W., Current Application of MOFs Based Heterogeneous Catalysts in Catalyzing Transesterification/Esterification for Biodiesel Production: A Review (2021) Energy Convers. Manag, 229, p. 113760
dc.relation.referencesAzimov, U., Okoro, V., Hernandez, H.H., Recent Progress and Trends in the Development of Microbial Biofuels from Solid Waste—A Review (2021) Energies, 14
dc.relation.referencesOdega, C.A., Ayodele, O., Alagbe, O., Adewole, A., Adekunle, A., Review of Anerobic Digestion Process for Biogas Production (2022) Biosci. J, 10, pp. 81-96
dc.relation.referencesLv, L., Dai, L., Du, W., Liu, D., Progress in Enzymatic Biodiesel Production and Commercialization (2021) Processes, 9
dc.relation.referencesScown, C.D., Baral, N.R., Yang, M., Vora, N., Huntington, T., Technoeconomic Analysis for Biofuels and Bioproducts (2021) Curr. Opin. Biotechnol, 67, pp. 58-64
dc.relation.referencesAcharya, R.N., Perez-Pena, R., Role of Comparative Advantage in Biofuel Policy Adoption in Latin America (2020) Sustainability, 12
dc.relation.referencesCherubin, M.R., Carvalho, J.L.N., Cerri, C.E.P., Nogueira, L.A.H., Souza, G.M., Cantarella, H., Land Use and Management Effects on Sustainable Sugarcane-Derived Bioenergy (2021) Land, 10
dc.relation.referencesKabeyi, M.J.B., Olanrewaju, O.A., Biogas Production and Applications in the Sustainable Energy Transition (2022) J. Energy, 2022, p. 8750221
dc.relation.referencesJankovský, M., García-Jácome, S.P., Dvořák, J., Nyarko, I., Hájek, M., Paletto, A., Dobsinska, Z., Keskitalo, H., Innovations in Forest Bioeconomy: A Bibliometric Analysis (2021) Forests, 12
dc.relation.referencesSallustio, L., Harfouche, A.L., Salvati, L., Marchetti, M., Corona, P., Evaluating the Potential of Marginal Lands Available for Sustainable Cellulosic Biofuel Production in Italy (2022) Socioecon. Plann. Sci, 82, p. 101309
dc.relation.references(2021) National Livestock Census (Censo Nacional Agropecuario), , DANE-ICA, Bogotá, Colombia
dc.relation.referencesSagastume Gutiérrez, A., Cabello Eras, J.J., Hens, L., Vandecasteele, C., The Energy Potential of Agriculture, Agroindustrial, Livestock, and Slaughterhouse Biomass Wastes through Direct Combustion and Anaerobic Digestion. The Case of Colombia (2020) J. Clean. Prod, 269, p. 122317
dc.relation.references(2018) Estimation of the Biomass Potential for Conversion into Biogas in Colombia and Its Use (Estimación Del Potencial de Conversión a Biogás de La Biomasa En Colombia y Su Aprovechamiento), , TECSOL, Bogotá, Colombia
dc.relation.referencesRubén Rodríguez-Nuñez, J., Surisadai, O., Baltazar, C., Anaerobic Digestion Technology for Management of Organic Wastes: Latin American Context (2020) Biogas Production, pp. 39-55. , Springer, Cham, Switzerland
dc.relation.referencesAhmed, N., Qamar, S., Jabeen, G., Yan, Q., Ahmad, M., Systematic Analysis of Factors Affecting Biogas Technology Acceptance: Insights from the Diffusion of Innovation (2022) Sustain. Energy Technol. Assess, 52, p. 102122
dc.relation.referencesAbubakar, A.M., Biodigester and Feedstock Type: Characteristic, Selection, and Global Biogas Production (2022) J. Eng. Res. Sci, 1, pp. 170-187
dc.relation.referencesMurugaiyan, J., Narayanan, A., Naina Mohamed, S., An Overview of Microbial Electrolysis Cell Configuration: Challenges and Prospects on Biohydrogen Production (2022) Int. J. Energy Res, 46, pp. 20811-20827
dc.relation.referencesTawalbeh, M., Alarab, S., Al-Othman, A., Muhammad, R., Javed, N., The Operating Parameters, Structural Composition, and Fuel Sustainability Aspects of PEM Fuel Cells: A Mini Review (2022) Fuels, 3, pp. 449-474
dc.relation.referencesFadzli, F.S., Bhawani, S.A., Adam Mohammad, R.E., Microbial Fuel Cell: Recent Developments in Organic Substrate Use and Bacterial Electrode Interaction (2021) J. Chem, 2021, p. 4570388
dc.relation.referencesSonawane, J.M., Mahadevan, R., Pandey, A., Greener, J., Recent Progress in Microbial Fuel Cells Using Substrates from Diverse Sources (2022) Heliyon, 8, p. e12353
dc.relation.referencesAli, R.B., Noori, M.T., Lee, S.H., Park, H.D., Min, B., Enhancing Biogas and Electricity Recovery Using an Iron-Manganese Oxide Catalyzed Bioanode in an Integrated Submersible Microbial Fuel Cell-Anaerobic Digester (2022) Sustain. Energy Technol. Assess, 52, p. 102276
dc.relation.referencesGuan, T., Alvfors, P., Lindbergh, G., Investigation of the Prospect of Energy Self-Sufficiency and Technical Performance of an Integrated PEMFC (Proton Exchange Membrane Fuel Cell), Dairy Farm and Biogas Plant System (2014) Appl. Energy, 130, pp. 685-691
dc.relation.referencesChouhan, K., Sinha, S., Kumar, S., Kumar, S., Steam Reforming of Biogas from Different Feedstocks for H2 Production and Its Use in PEMFC: Thermodynamic Analysis (2022) Water-Energy-Nexus in the Ecological Transition, pp. 295-298. , Springer, Cham, Switzerland
dc.relation.referencesGhorbani, B., Mehrpooya, M., Karimian Bahnamiri, F., An Integrated Structure of Bio-Methane/Bio-Methanol Cogeneration Composed of Biogas Upgrading Process and Alkaline Electrolysis Unit Coupled with Parabolic Trough Solar Collectors System (2021) Sustain. Energy Technol. Assess, 46, p. 101304
dc.relation.referencesKong, F., Swift, J., Zhang, Q., Fan, L.S., Tong, A., Biogas to H2 Conversion with CO2 Capture Using Chemical Looping Technology: Process Simulation and Comparison to Conventional Reforming Processes (2020) Fuel, 279, p. 118479
dc.relation.referencesAcevedo-Osorio, Á., Chohan, J.K., Agroecology as Social Movement and Practice in Cabrera’s Peasant Reserve Zone, Colombia (2019) Agroecol. Sustain. Food Syst, 44, pp. 331-351
dc.relation.referencesKhan, N., Ray, R.L., Sargani, G.R., Ihtisham, M., Khayyam, M., Ismail, S., Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture (2021) Sustainability, 13
dc.relation.referencesSarker, S.A., Wang, S., Adnan, K.M.M., Sattar, M.N., Economic Feasibility and Determinants of Biogas Technology Adoption: Evidence from Bangladesh (2020) Renew. Sustain. Energy Rev, 123, p. 109766
dc.relation.referencesIqbal, N., Sakhani, M.A., Khan, A.R., Atiq-ur-Rehman, Ajmal, Z., Khan, M.Z., Socioeconomic Impacts of Domestic Biogas Plants on Rural Households to Strengthen Energy Security (2021) Environ. Sci. Pollut. Res, 28, pp. 27446-27456
dc.relation.referencesTian, H., Wang, X., Lim, E.Y., Lee, J.T.E., Ee, A.W.L., Zhang, J., Tong, Y.W., Life Cycle Assessment of Food Waste to Energy and Resources: Centralized and Decentralized Anaerobic Digestion with Different Downstream Biogas Utilization (2021) Renew. Sustain. Energy Rev, 150, p. 111489
dc.relation.referencesAli, S., Yan, Q., Razzaq, A., Khan, I., Irfan, M., Modeling Factors of Biogas Technology Adoption: A Roadmap towards Environmental Sustainability and Green Revolution (2022) Environ. Sci. Pollut. Res, 30, pp. 11838-11860
dc.relation.references(2021) Enabling Conditions for Bioenergy Finance and Investment in Colombia, , Green Finance and Investment, OECD, Bogotá, Colombia
dc.relation.referencesAlzate, S., Restrepo-Cuestas, B., Jaramillo-Duque, Á., Municipal Solid Waste as a Source of Electric Power Generation in Colombia: A Techno-Economic Evaluation under Different Scenarios (2019) Resources, 8
dc.relation.referencesArias-Gaviria, J., Carvajal-Quintero, S.X., Arango-Aramburo, S., Understanding Dynamics and Policy for Renewable Energy Diffusion in Colombia (2019) Renew. Energy, 139, pp. 1111-1119
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem