Mostrar el registro sencillo del ítem

dc.contributor.authorRodríguez M
dc.contributor.authorTobón D.P
dc.contributor.authorMúnera D.
dc.date.accessioned2023-10-24T19:23:54Z
dc.date.available2023-10-24T19:23:54Z
dc.date.created2023
dc.identifier.issn26673053
dc.identifier.urihttp://hdl.handle.net/11407/7883
dc.description.abstractThe fourth industrial revolution (Industry 4.0) has the potential to provide real-time, secure, and autonomous manufacturing environments. The Industrial Internet of Things (IIoT) is a powerful tool to make this promise a reality because it can provide enhanced wireless connectivity for data collection and processing in interconnected plants. Implementing IIoT systems entails using heterogeneous technologies, which collect incomplete, unstructured, redundant, and noisy data. This condition raises security flaws and data collection issues that affect the data quality of the systems. One effective way to identify poor-quality data is through anomaly detection systems, which provide specific information that helps to decide whether a device is malfunctioning, a critical event is occurring, or the system's security is being breached. Using early anomaly detection mechanisms prevents the IIoT system from being influenced by anomalies in decision-making. Identifying the origin of the anomaly (e.g., event, failure, or attack) supports the user in making effective decisions about handling the data or identifying the device that exhibits abnormal behavior. However, implementing anomaly detection systems is not easy since various factors must be defined, such as what method to use for the best performance. What information must we process to detect and classify anomalies? Which devices have to be monitored to detect anomalies? Which device of the IIoT system will be in charge of executing the anomaly detection algorithm? Hence, in this paper, we performed a state-of-the-art review, including 99 different articles aiming to identify the answer of various authors to these questions. We also highlighted works on IIoT anomaly detection and classification, used methods, and open challenges. We found that automatic anomaly classification in IIoT is an open research topic, and additional information from the context of the application is rarely used to facilitate anomaly detection. © 2023 The Author(s)eng
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85159629184&doi=10.1016%2fj.iswa.2023.200232&partnerID=40&md5=9688e1c43f6bb8129616174e7a7417a6
dc.sourceIntell. Syst. Applications.
dc.sourceIntelligent Systems with Applicationseng
dc.subjectAnomaly classificationeng
dc.subjectAnomaly detectioneng
dc.subjectContext-awarenesseng
dc.subjectContext-informationeng
dc.subjectIIoTeng
dc.subjectIndustrial Internet of thingseng
dc.titleAnomaly classification in industrial Internet of things: A revieweng
dc.typeReview
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Telecomunicacionesspa
dc.type.spaRevisión
dc.identifier.doi10.1016/j.iswa.2023.200232
dc.relation.citationvolume18
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationRodríguez, M., Universidad de Antioquia, Medellin, Colombia
dc.affiliationTobón, D.P., Universidad de Medellín, Medellín, Colombia
dc.affiliationMúnera, D., Universidad de Antioquia, Medellin, Colombia
dc.relation.referencesAbu Al-Haija, Q., Al Badawi, A., Bojja, G.R., Boost-defence for resilient iot networks: A head-to-toe approach (2022) Expert Systems, 39 (10)
dc.relation.referencesAbu Al-Haija, Q., Al-Dala'ien, M., Elba-iot: An ensemble learning model for botnet attack detection in iot networks (2022) Journal of Sensor and Actuator Networks, 11 (1), p. 18
dc.relation.referencesAbu Al-Haija, Q., Zein-Sabatto, S., An efficient deep-learning-based detection and classification system for cyber-attacks in iot communication networks (2020) Electronics, 9 (12), p. 2152
dc.relation.referencesAhakonye, L.A.C., Nwakanma, C.I., Lee, J.-M., Kim, D.-S., Scada intrusion detection scheme exploiting the fusion of modified decision tree and chi-square feature selection (2023) Internet of Things, 21
dc.relation.referencesAhakonye, L.A.C., Nwakanma, C.I., Lee, J.M., Kim, D.-S., Agnostic ch-dt technique for scada network high-dimensional data-aware intrusion detection system (2023) IEEE Internet of Things Journal
dc.relation.referencesAl-Hawawreh, M., Sitnikova, E., Industrial Internet of things based ransomware detection using stacked variational neural network (2019) Proceedings of the 3rd international conference on big data and Internet of things, pp. 126-130
dc.relation.referencesAl-Hawawreh, M., Sitnikova, E., den Hartog, F., An efficient intrusion detection model for edge system in brownfield industrial Internet of things (2019) Proceedings of the 3rd international conference on big data and Internet of things, pp. 83-87
dc.relation.referencesAlbulayhi, K., Abu Al-Haija, Q., Alsuhibany, S.A., Jillepalli, A.A., Ashrafuzzaman, M., Sheldon, F.T., Iot intrusion detection using machine learning with a novel high performing feature selection method (2022) Applied Sciences, 12 (10), p. 5015
dc.relation.referencesAlexopoulos, K., Sipsas, K., Xanthakis, E., Makris, S., Mourtzis, D., An industrial Internet of things based platform for context-aware information services in manufacturing (2018) International Journal of Computer Integrated Manufacturing, 31 (11), pp. 1111-1123
dc.relation.referencesAlruwaili, F.F., Intrusion detection and prevention in industrial iot: A technological survey (2021) 2021 international conference on electrical, computer, communications and mechatronics engineering (ICECCME), pp. 1-5. , IEEE
dc.relation.referencesAngelopoulos, A., Michailidis, E.T., Nomikos, N., Trakadas, P., Hatziefremidis, A., Voliotis, S., Zahariadis, T., Tackling faults in the industry 4.0 era—a survey of machine-learning solutions and key aspects (2020) Sensors, 20 (1), p. 109
dc.relation.referencesAnton, S.D., Fraunholz, D., Schotten, H.D., Teuber, S., A question of context: Enhancing intrusion detection by providing context information (2017) 2017 Internet of things business models, users, and networks, pp. 1-8. , IEEE
dc.relation.referencesAnton, S.D.D., Lohfink, A.P., Garth, C., Schotten, H.D., Security in process: Detecting attacks in industrial process data (2019) Proceedings of the third central European cybersecurity conference, pp. 1-6
dc.relation.referencesAoudi, W., Almgren, M., A scalable specification-agnostic multi-sensor anomaly detection system for iiot environments (2020) International Journal of Critical Infrastructure Protection, 30, pp. 1-8
dc.relation.referencesAranda, J.A.S., dos Santos Costa, R., de Vargas, V.W., da Silva Pereira, P.R., Barbosa, J.L.V., Vianna, M.P., Context-aware edge computing and Internet of things in smart grids: A systematic mapping study (2022) Computers & Electrical Engineering, 99
dc.relation.referencesAruquipa, G., Diaz, F., An iot architecture based on the control of bio inspired manufacturing system for the detection of anomalies with vibration sensors (2022) Procedia Computer Science, 200, pp. 438-450
dc.relation.referencesBa, A., Lorenzi, F., Ploennigs, J., Monitoring of iot systems at the edges with transformer-based graph convolutional neural networks (2022) 2022 IEEE international conference on edge computing and communications, pp. 41-49. , IEEE EDGE
dc.relation.referencesBa, A., Lynch, K., Ploennigs, J., Schaper, B., Lohse, C., Lorenzi, F., Automated configuration of heterogeneous graph neural networks with a semantic math parser for iot systems (2022) IEEE Internet of Things Journal, 10 (2), pp. 1042-1052
dc.relation.referencesBae, G., Jang, S., Kim, M., Joe, I., Autoencoder-based on anomaly detection with intrusion scoring for smart factory environments (2018) International conference on parallel and distributed computing: Applications and technologies, pp. 414-423. , Springer
dc.relation.referencesBernieri, G., Conti, M., Pozzan, G., Amon: An automaton monitor for industrial cyber-physical security (2019) Proceedings of the 14th international conference on availability, reliability and security, pp. 1-10
dc.relation.referencesBernieri, G., Conti, M., Turrin Kingfisher, F., An industrial security framework based on variational autoencoders (2019) Proceedings of the 1st workshop on machine learning on edge in sensor systems, pp. 7-12
dc.relation.referencesBernieri, G., Pascucci, F., Improving security in industrial Internet of things: A distributed intrusion detection methodology (2019) Security and privacy trends in the industrial Internet of things, pp. 161-179. , Springer
dc.relation.referencesBodo, R., Bertocco, M., Bianchi, A., Feature ranking under industrial constraints in continuous monitoring applications based on machine learning techniques (2020) 2020 IEEE international instrumentation and measurement technology conference (I2MTC), pp. 1-6. , IEEE
dc.relation.referencesBotta, A., De Donato, W., Persico, V., Pescapé, A., Integration of cloud computing and Internet of things: A survey (2016) Future Generations Computer Systems, 56, pp. 684-700
dc.relation.referencesBoyes, H., Hallaq, B., Cunningham, J., Watson, T., The industrial Internet of things (iiot): An analysis framework (2018) Computers in Industry, 101, pp. 1-12
dc.relation.referencesCai, J., Wang, Q., Luo, J., Liu, Y., Liao, L., Capbad: Content-agnostic, payload-based anomaly detector for industrial control protocols (2021) IEEE Internet of Things Journal
dc.relation.referencesÇavdar, T., Ebrahimpour, N., Kakız, M.T., Günay, F.B., Decision-making for the anomalies in iiots based on 1d convolutional neural networks and Dempster–Shafer theory (ds-1dcnn) (2023) Journal of Supercomputing, 79 (2), pp. 1683-1704
dc.relation.referencesChen, Z., Chen, D., Zhang, X., Yuan, Z., Cheng, X., Learning graph structures with transformer for multivariate time-series anomaly detection in iot (2021) IEEE Internet of Things Journal, 9 (12), pp. 9179-9189
dc.relation.referencesCui, J.-F., Xia, H., Zhang, R., Hu, B.-X., Cheng, X.-G., Optimization scheme for intrusion detection scheme gbdt in edge computing center (2021) Computer Communications, 168, pp. 136-145
dc.relation.referencesDang, T.-B., Le, D.-T., Kim, M., Choo, H., Neighboring information exploitation for anomaly detection in intelligent iot (2021) International conference on future data and security engineering, pp. 260-271. , Springer
dc.relation.referencesDe, S., Bermudez-Edo, M., Xu, H., Cai, Z., Deep generative models in the industrial Internet of things: A survey (2022) IEEE Transactions on Industrial Informatics
dc.relation.referencesDe Vita, F., Bruneo, D., Das, S.K., On the use of a full stack hardware/software infrastructure for sensor data fusion and fault prediction in industry 4.0 (2020) Pattern Recognition Letters, 138, pp. 30-37
dc.relation.referencesDe Vita, F., Bruneo, D., Das, S.K., A novel data collection framework for telemetry and anomaly detection in industrial iot systems (2020) 2020 IEEE/ACM fifth international conference on Internet-of-things design and implementation (IoTDI), pp. 245-251. , IEEE
dc.relation.referencesDe Vita, F., Bruneo, D., Das, S.K., A semi-supervised Bayesian anomaly detection technique for diagnosing faults in industrial iot systems (2021) 2021 IEEE international conference on smart computing (SMARTCOMP), pp. 31-38. , IEEE
dc.relation.referencesDeMedeiros, K., Hendawi, A., Alvarez, M., A survey of ai-based anomaly detection in iot and sensor networks (2023) Sensors, 23 (3), p. 1352
dc.relation.referencesDemertzis, K., Iliadis, L., Tziritas, N., Kikiras, P., Anomaly detection via blockchained deep learning smart contracts in industry 4.0 (2020) Neural Computing & Applications, 32 (23), pp. 17361-17378
dc.relation.referencesDouiba, M., Benkirane, S., Guezzaz, A., Azrour, M., An improved anomaly detection model for iot security using decision tree and gradient boosting (2023) Journal of Supercomputing, 79 (3), pp. 3392-3411
dc.relation.referencesDzaferagic, M., Marchetti, N., Macaluso, I., Fault detection and classification in industrial iot in case of missing sensor data (2021), https://doi.org/10.1109/JIOT.2021.3116785
dc.relation.referencesEhsani-Besheli, F., Zarandi, H.R., Context-aware anomaly detection in embedded systems (2017) Advances in dependability engineering of complex systems, pp. 151-165. , Springer
dc.relation.referencesElnour, M., Meskin, N., Khan, K., Jain, R., Application of data-driven attack detection framework for secure operation in smart buildings (2021) Sustainable Cities and Society, 69
dc.relation.referencesEnăchescu, C., Sándor, H., Genge, B., A multi-model-based approach to detect cyber stealth attacks in industrial Internet of things (2019) 2019 international conference on software, telecommunications and computer networks (SoftCOM), pp. 1-6. , IEEE
dc.relation.referencesFahim, M., Sillitti, A., Anomaly detection, analysis and prediction techniques in iot environment: A systematic literature review (2019) IEEE Access, 7, pp. 81664-81681
dc.relation.referencesFaisal, M.A., Cardenas, A.A., Wool, A., Profiling communications in industrial ip networks: Model complexity and anomaly detection (2019) Security and privacy trends in the industrial Internet of things, pp. 139-160. , Springer
dc.relation.referencesFeng, Y., Chen, J., Liu, Z., Lv, H., Wang, J., Full graph autoencoder for one-class group anomaly detection of iiot system (2022) IEEE Internet of Things Journal, 9 (21), pp. 21886-21898
dc.relation.referencesFerrari, P., Rinaldi, S., Sisinni, E., Colombo, F., Ghelfi, F., Maffei, D., Malara, M., Performance evaluation of full-cloud and edge-cloud architectures for industrial iot anomaly detection based on deep learning (2019) 2019 II workshop on metrology for industry 4.0 and IoT (MetroInd4. 0&IoT), pp. 420-425. , IEEE
dc.relation.referencesFriha, O., Ferrag, M.A., Shu, L., Maglaras, L., Choo, K.-K.R., Nafaa, M., Felids: Federated learning-based intrusion detection system for agricultural Internet of things (2022) Journal of Parallel and Distributed Computing
dc.relation.referencesGai, F., Zhang, J., Zhu, P., Jiang, X., Multidimensional trust-based anomaly detection system in Internet of things (2017) International conference on wireless algorithms, systems, and applications, pp. 302-313. , Springer
dc.relation.referencesGarg, S., Kaur, K., Batra, S., Kaddoum, G., Kumar, N., Boukerche, A., A multi-stage anomaly detection scheme for augmenting the security in iot-enabled applications (2020) Future Generations Computer Systems, 104, pp. 105-118
dc.relation.referencesGaritano, I., Iturbe, M., Ezpeleta, E., Zurutuza, U., Who's there? Evaluating data source integrity and veracity in iiot using multivariate statistical process control (2019) Security and privacy trends in the industrial Internet of things, pp. 181-198. , Springer
dc.relation.referencesGarmaroodi, M.S.S., Farivar, F., Haghighi, M.S., Shoorehdeli, M.A., Jolfaei, A., Detection of anomalies in industrial iot systems by data mining: Study of christ osmotron water purification system (2020) IEEE Internet of Things Journal
dc.relation.referencesGenge, B., Haller, P., Enăchescu, C., Anomaly detection in aging industrial Internet of things (2019) IEEE Access, 7, pp. 74217-74230
dc.relation.referencesGhaeini, H.R., Antonioli, D., Brasser, F., Sadeghi, A.-R., Tippenhauer, N.O., State-aware anomaly detection for industrial control systems (2018) Proceedings of the 33rd annual ACM symposium on applied computing, pp. 1620-1628
dc.relation.referencesGhosh, N., Maity, K., Paul, R., Maity, S., Outlier detection in sensor data using machine learning techniques for iot framework and wireless sensor networks: A brief study (2019) 2019 international conference on applied machine learning (ICAML), pp. 187-190. , IEEE
dc.relation.referencesGorbenko, A., Popov, V., Abnormal behavioral pattern detection in closed-loop robotic systems for zero-day deceptive threats (2020) 2020 international conference on industrial engineering, applications and manufacturing (ICIEAM), pp. 1-6. , IEEE
dc.relation.referencesHalder, S., Newe, T., Radio fingerprinting for anomaly detection using federated learning in lora-enabled industrial Internet of things (2023) Future generation computer systems
dc.relation.referencesHansch, G., Schneider, P., Brost, G.S., Deriving impact-driven security requirements and monitoring measures for industrial iot (2019) Proceedings of the 5th on cyber-physical system security workshop, pp. 37-45
dc.relation.referencesHashmat, F., Abbas, S.G., Hina, S., Shah, G.A., Bakhshi, T., Abbas, W., An automated context-aware iot vulnerability assessment rule-set generator (2022) Computer Communications, 186, pp. 133-152
dc.relation.referencesHayes, M.A., Capretz, M.A., Contextual anomaly detection in big sensor data (2014) 2014 IEEE international congress on big data, pp. 64-71. , IEEE
dc.relation.referencesHe, J., Kong, L., Frondelius, T., Silvén, O., Juntti, M., Decision triggered data transmission and collection in industrial Internet of things (2020) 2020 IEEE wireless communications and networking conference (WCNC), pp. 1-5. , IEEE
dc.relation.referencesHu, J., Kaur, K., Lin, H., Wang, X., Hassan, M.M., Razzak, I., Hammoudeh, M., Intelligent anomaly detection of trajectories for iot empowered maritime transportation systems (2022) IEEE Transactions on Intelligent Transportation Systems
dc.relation.referencesHuong, T.T., Bac, T.P., Long, D.M., Luong, T.D., Dan, N.M., Thang, B.D., Tran, K.P., Detecting cyberattacks using anomaly detection in industrial control systems: A federated learning approach (2021) Computers in Industry, 132
dc.relation.referencesKarkouch, A., Mousannif, H., Al Moatassime, H., Noel, T., Data quality in Internet of things: A state-of-the-art survey (2016) Journal of Network and Computer Applications, 73, pp. 57-81
dc.relation.referencesKetonen, V., Blech, J.O., Anomaly detection for injection molding using probabilistic deep learning (2021) 2021 4th IEEE international conference on industrial cyber-physical systems (ICPS), pp. 70-77. , IEEE
dc.relation.referencesKhan, I.A., Moustafa, N., Pi, D., Sallam, K.M., Zomaya, A.Y., Li, B., A new explainable deep learning framework for cyber threat discovery in industrial iot networks (2021) IEEE Internet of Things Journal
dc.relation.referencesKim, D., Yang, H., Chung, M., Cho, S., Kim, H., Kim, M., Kim, K., Kim, E., Squeezed convolutional variational autoencoder for unsupervised anomaly detection in edge device industrial Internet of things (2018) 2018 international conference on information and computer technologies (icict), pp. 67-71. , IEEE
dc.relation.referencesKim, J., Kang, H., Kang, P., Time-series anomaly detection with stacked transformer representations and 1d convolutional network (2023) Engineering Applications of Artificial Intelligence, 120
dc.relation.referencesKong, F., Li, J., Jiang, B., Wang, H., Song, H., Integrated generative model for industrial anomaly detection via bi-directional lstm and attention mechanism (2021) IEEE Transactions on Industrial Informatics
dc.relation.referencesKozik, R., Pawlicki, M., Choraś, M., A new method of hybrid time window embedding with transformer-based traffic data classification in iot-networked environment (2021) Pattern Analysis & Applications, 24 (4), pp. 1441-1449
dc.relation.referencesKrundyshev, V., Kalinin, M., Hybrid neural network framework for detection of cyber attacks at smart infrastructures (2019) Proceedings of the 12th international conference on security of information and networks, pp. 1-7
dc.relation.referencesKumar, A., Shridhar, M., Swaminathan, S., Lim, T.J., Machine learning-based early detection of iot botnets using network-edge traffic (2022) Computers & Security
dc.relation.referencesKumar, A.S., Raja, S., Pritha, N., Raviraj, H., Lincy, R.B., Rubia, J.J., An adaptive transformer model for anomaly detection in wireless sensor networks in real-time (2023) Measurement: Sensors, 25
dc.relation.referencesLangone, R., Cuzzocrea, A., Skantzos, N., Interpretable anomaly prediction: Predicting anomalous behavior in industry 4.0 settings via regularized logistic regression tools (2020) Data & Knowledge Engineering, 130
dc.relation.referencesLi, X., Xu, M., Vijayakumar, P., Kumar, N., Liu, X., Detection of low-frequency and multi-stage attacks in industrial Internet of things (2020) IEEE Transactions on Vehicular Technology, 69 (8), pp. 8820-8831
dc.relation.referencesLi, Y., Xu, Y., Liu, Z., Hou, H., Zheng, Y., Xin, Y., Zhao, Y., Cui, L., Robust detection for network intrusion of industrial iot based on multi-cnn fusion (2020) Measurement, 154
dc.relation.referencesLi, Z., Ding, X., Wang, H., An effective constraint-based anomaly detection approach on multivariate time series (2020) Asia-Pacific web (APWeb) and web-age information management (WAIM) joint international conference on web and big data, pp. 61-69. , Springer
dc.relation.referencesLiu, S., Chen, X., Peng, X., Xiao, R., Network log anomaly detection based on gru and svdd (2019) 2019 IEEE intl conf on parallel & distributed processing with applications, big data & cloud computing, sustainable computing & communications, social computing & networking (ISPA/BDCloud/SocialCom/SustainCom), pp. 1244-1249. , IEEE
dc.relation.referencesLiu, Y., Garg, S., Nie, J., Zhang, Y., Xiong, Z., Kang, J., Hossain, M.S., Deep anomaly detection for time-series data in industrial iot: A communication-efficient on-device federated learning approach (2020) IEEE Internet of Things Journal, 8 (8), pp. 6348-6358
dc.relation.referencesLiu, Y., Kumar, N., Xiong, Z., Lim, W.Y.B., Kang, J., Niyato, D., Communication-efficient federated learning for anomaly detection in industrial Internet of things (2020) GLOBECOM 2020-2020 IEEE global communications conference, pp. 1-6. , IEEE
dc.relation.referencesLiu, Y., Zhi, T., Shen, M., Wang, L., Li, Y., Wan, M., Software-defined ddos detection with information entropy analysis and optimized deep learning (2022) Future Generations Computer Systems, 129, pp. 99-114
dc.relation.referencesMadhawa, S., Balakrishnan, P., Arumugam, U., Employing invariants for anomaly detection in software defined networking based industrial Internet of things (2018) Journal of Intelligent & Fuzzy Systems, 35 (2), pp. 1267-1279
dc.relation.referencesMiciolino, E.E., Setola, R., Bernieri, G., Panzieri, S., Pascucci, F., Polycarpou, M.M., Fault diagnosis and network anomaly detection in water infrastructures (2017) IEEE Design & Test, 34 (4), pp. 44-51
dc.relation.referencesMohamudally, N., Peermamode-Mohaboob, M., Building an anomaly detection engine (ade) for iot smart applications (2018) Procedia Computer Science, 134, pp. 10-17
dc.relation.referencesMoradbeikie, A., Jamshidi, K., Bohlooli, A., Garcia, J., Masip-Bruin, X., An iiot based ics to improve safety through fast and accurate hazard detection and differentiation (2020) IEEE Access, 8, pp. 206942-206957
dc.relation.referencesMukherjee, D., A novel strategy for locational detection of false data injection attack (2022) Sustainable Energy, Grids and Networks
dc.relation.referencesMuna, A.-H., Moustafa, N., Sitnikova, E., Identification of malicious activities in industrial Internet of things based on deep learning models (2018) Journal of Information Security and Applications, 41, pp. 1-11
dc.relation.referencesNedeljkovic, D., Jakovljevic, Z., Cnn based method for the development of cyber-attacks detection algorithms in industrial control systems (2022) Computers & Security, 114
dc.relation.referencesNizam, H., Zafar, S., Lv, Z., Wang, F., Hu, X., Real-time deep anomaly detection framework for multivariate time-series data in industrial iot (2022) IEEE Sensors Journal, 22 (23), pp. 22836-22849
dc.relation.referencesOuyang, Z., Sun, X., Chen, J., Yue, D., Zhang, T., Multi-view stacking ensemble for power consumption anomaly detection in the context of industrial Internet of things (2018) IEEE Access, 6, pp. 9623-9631
dc.relation.referencesPan, J., Ji, W., Zhong, B., Wang, P., Wang, X., Chen Duma, J., Dual mask for multivariate time series anomaly detection (2022) IEEE Sensors Journal
dc.relation.referencesPark, S.H., Park, H.J., Choi, Y.-J., Rnn-based prediction for network intrusion detection (2020) 2020 international conference on artificial intelligence in information and communication (ICAIIC), pp. 572-574. , IEEE
dc.relation.referencesPeng, Y., Tan, A., Wu, J., Bi, Y., Hierarchical edge computing: A novel multi-source multi-dimensional data anomaly detection scheme for industrial Internet of things (2019) IEEE Access, 7, pp. 111257-111270
dc.relation.referencesPetersen, K., Vakkalanka, S., Kuzniarz, L., Guidelines for conducting systematic mapping studies in software engineering: An update (2015) Information and Software Technology, 64, pp. 1-18
dc.relation.referencesRaposo, D., Rodrigues, A., Sinche, S., Silva, J.S., Boavida, F., Securing wirelesshart: Monitoring, exploring and detecting new vulnerabilities (2018) 2018 IEEE 17th international symposium on network computing and applications (NCA), pp. 1-9. , IEEE
dc.relation.referencesRaposo, D., Rodrigues, A., Sinche, S., Silva, J.S., Boavida, F., Security and fault detection in in-node components of iiot constrained devices (2019) 2019 IEEE 44th conference on local computer networks (LCN), pp. 282-290. , IEEE
dc.relation.referencesRazzak, I., Zafar, K., Imran, M., Xu, G., Randomized nonlinear one-class support vector machines with bounded loss function to detect of outliers for large scale iot data (2020) Future Generations Computer Systems, 112, pp. 715-723
dc.relation.referencesRey, V., Sánchez, P.M.S., Celdrán, A.H., Bovet, G., Federated learning for malware detection in iot devices (2022) Computer Networks
dc.relation.referencesRousopoulou, V., Vafeiadis, T., Nizamis, A., Iakovidis, I., Samaras, L., Kirtsoglou, A., Georgiadis, K., Tzovaras, D., Cognitive analytics platform with ai solutions for anomaly detection (2022) Computers in Industry, 134
dc.relation.referencesSankaran, K.S., Kim, B.-H., Deep learning based energy efficient optimal rmc-cnn model for secured data transmission and anomaly detection in industrial iot (2023) Sustainable Energy Technologies and Assessments, 56
dc.relation.referencesSaurav, S., Malhotra, P., TV, V., Gugulothu, N., Vig, L., Agarwal, P., Shroff, G., Online anomaly detection with concept drift adaptation using recurrent neural networks (2018) Proceedings of the acm India joint international conference on data science and management of data, pp. 78-87
dc.relation.referencesSavic, M., Lukic, M., Danilovic, D., Bodroski, Z., Bajović, D., Mezei, I., Vukobratovic, D., Jakovetić, D., Deep learning anomaly detection for cellular iot with applications in smart logistics (2021) IEEE Access, 9, pp. 59406-59419
dc.relation.referencesSchneider, P., Böttinger, K., High-performance unsupervised anomaly detection for cyber-physical system networks (2018) Proceedings of the 2018 workshop on cyber-physical systems security and privacy, pp. 1-12
dc.relation.referencesSeo, C.-B., Lee, G., Lee, Y., Seo, S.-H., Echo-guard: Acoustic-based anomaly detection system for smart manufacturing environments (2021) International conference on information security applications, pp. 64-75. , Springer
dc.relation.referencesShi, Y., Li, F., Song, W., Li, X.-Y., Ye, J., Energy audition based cyber-physical attack detection system in iot (2019) Proceedings of the ACM Turing celebration conference-China, pp. 1-5
dc.relation.referencesSisinni, E., Saifullah, A., Han, S., Jennehag, U., Gidlund, M., Industrial Internet of things: Challenges, opportunities, and directions (2018) IEEE Transactions on Industrial Informatics, 14 (11), pp. 4724-4734
dc.relation.referencesSu, J., He, S., Wu, Y., Features selection and prediction for iot attacks (2022) High-Confidence Computing, 2 (2)
dc.relation.referencesSun, P., Yuepeng, E., Li, T., Wu, Y., Ge, J., You, J., Wu, B., Context-aware learning for anomaly detection with imbalanced log data (2020) 2020 IEEE 22nd international conference on high performance computing and communications, IEEE 18th international conference on smart city, IEEE 6th international conference on data science and systems (HPCC/SmartCity/DSS), pp. 449-456. , IEEE
dc.relation.referencesTandiya, N., Jauhar, A., Marojevic, V., Reed, J.H., Deep predictive coding neural network for rf anomaly detection in wireless networks (2018) 2018 IEEE international conference on communications workshops (ICC workshops), pp. 1-6. , IEEE
dc.relation.referencesTertytchny, G., Nicolaou, N., Michael, M.K., Classifying network abnormalities into faults and attacks in iot-based cyber physical systems using machine learning (2020) Microprocessors and Microsystems, 77
dc.relation.referencesTruong, H.T., Ta, B.P., Le, Q.A., Nguyen, D.M., Le, C.T., Nguyen, H.X., Do, H.T., Tran, K.P., Light-weight federated learning-based anomaly detection for time-series data in industrial control systems (2022) Computers in Industry, 140
dc.relation.referencesVaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I., Attention is all you need (2017) Advances in Neural Information Processing Systems, 30
dc.relation.referencesWang, C., Iot anomaly detection method in intelligent manufacturing industry based on trusted evaluation (2020) The International Journal of Advanced Manufacturing Technology, 107 (3), pp. 993-1005
dc.relation.referencesWang, C., Wang, B., Liu, H., Qu, H., Anomaly detection for industrial control system based on autoencoder neural network (2020) Wireless Communications and Mobile Computing, 2020
dc.relation.referencesWang, Y., Perry, M., Whitlock, D., Sutherland, J.W., Detecting anomalies in time series data from a manufacturing system using recurrent neural networks (2020) Journal of Manufacturing Systems
dc.relation.referencesWang, S.-J., Cai, C.X., Tseng, Y.-W., Li, K.S.-M., Feature selection for malicious traffic detection with machine learning (2020) 2020 international computer symposium (ICS), pp. 414-419. , IEEE
dc.relation.referencesWang, X., Garg, S., Lin, H., Hu, J., Kaddoum, G., Piran, M.J., Hossain, M.S., Towards accurate anomaly detection in industrial Internet-of-things using hierarchical federated learning (2021) IEEE Internet of Things Journal
dc.relation.referencesWang, H., Mumtaz, S., Li, H., Liu, J., Yang, F., An identification strategy for unknown attack through the joint learning of space–time features (2021) Future Generations Computer Systems, 117, pp. 145-154
dc.relation.referencesWang, X., Garg, S., Lin, H., Hu, J., Kaddoum, G., Piran, M.J., Hossain, M.S., Toward accurate anomaly detection in industrial Internet of things using hierarchical federated learning (2021) IEEE Internet of Things Journal, 9 (10), pp. 7110-7119
dc.relation.referencesWang, X., Pi, D., Zhang, X., Liu, H., Guo, C., Variational transformer-based anomaly detection approach for multivariate time series (2022) Measurement, 191
dc.relation.referencesWangwang, W., Yunchun, Z., Chengjie, L., Xuchenming, S., Yuting, Z., Xin, Z., Network traffic oriented malware detection in iot (Internet-of-things) (2021) 2021 international conference on networking and network applications (NaNA), pp. 301-307. , IEEE
dc.relation.referencesWeinger, B., Kim, J., Sim, A., Nakashima, M., Moustafa, N., Wu, K.J., Enhancing iot anomaly detection performance for federated learning (2022) Digital Communications and Networks
dc.relation.referencesWu, D., Jiang, Z., Xie, X., Wei, X., Yu, W., Li, R., Lstm learning with Bayesian and Gaussian processing for anomaly detection in industrial iot (2019) IEEE Transactions on Industrial Informatics, 16 (8), pp. 5244-5253
dc.relation.referencesWu, Y., Dai, H.-N., Tang, H., Graph neural networks for anomaly detection in industrial Internet of things (2021) IEEE Internet of Things Journal
dc.relation.referencesYang, H., Liang, S., Ni, J., Li, H., Shen, X.S., Secure and efficient k nn classification for industrial Internet of things (2020) IEEE Internet of Things Journal, 7 (11), pp. 10945-10954
dc.relation.referencesYang, K., Shi, Y., Yu, Z., Yang, Q., Sangaiah, A.K., Zeng, H., Stacked one-class broad learning system for intrusion detection in industry 4.0 (2022) IEEE Transactions on Industrial Informatics
dc.relation.referencesYang, Y., Yang, X., Heidari, M., Khan, M.A., Srivastava, G., Khosravi, M., Qi, L., Astream: Data-stream-driven scalable anomaly detection with accuracy guarantee in iiot environment (2022) IEEE Transactions on Network Science and Engineering
dc.relation.referencesYounan, M., Houssein, E.H., Elhoseny, M., Ali, A.A., Challenges and recommended technologies for the industrial Internet of things: A comprehensive review (2020) Measurement, 151
dc.relation.referencesZeyu, H., Geming, X., Zhaohang, W., Sen, Y., Survey on edge computing security (2020) 2020 international conference on big data, artificial intelligence and Internet of things engineering (ICBAIE), pp. 96-105. , IEEE
dc.relation.referencesZhan, P., Wang, S., Wang, J., Qu, L., Wang, K., Hu, Y., Li, X., Temporal anomaly detection on iiot-enabled manufacturing (2021) Journal of Intelligent Manufacturing, pp. 1-10
dc.relation.referencesZhang, X., Li, J., Zhang, D., Gao, J., Jiang, H., Research on feature selection for cyber attack detection in industrial Internet of things (2020) Proceedings of the 2020 international conference on cyberspace innovation of advanced technologies, pp. 256-262
dc.relation.referencesZhou, X., Hu, Y., Liang, W., Ma, J., Jin, Q., Variational lstm enhanced anomaly detection for industrial big data (2020) IEEE Transactions on Industrial Informatics, 17 (5), pp. 3469-3477
dc.relation.referencesZugasti, E., Iturbe, M., Garitano, I., Zurutuza, U., Null is not always empty: Monitoring the null space for field-level anomaly detection in industrial iot environments (2018) 2018 global Internet of things summit (GIoTS), pp. 1-6. , IEEE
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem