dc.contributor.author | Rodríguez M | |
dc.contributor.author | Tobón D.P | |
dc.contributor.author | Múnera D. | |
dc.date.accessioned | 2023-10-24T19:23:54Z | |
dc.date.available | 2023-10-24T19:23:54Z | |
dc.date.created | 2023 | |
dc.identifier.issn | 26673053 | |
dc.identifier.uri | http://hdl.handle.net/11407/7883 | |
dc.description.abstract | The fourth industrial revolution (Industry 4.0) has the potential to provide real-time, secure, and autonomous manufacturing environments. The Industrial Internet of Things (IIoT) is a powerful tool to make this promise a reality because it can provide enhanced wireless connectivity for data collection and processing in interconnected plants. Implementing IIoT systems entails using heterogeneous technologies, which collect incomplete, unstructured, redundant, and noisy data. This condition raises security flaws and data collection issues that affect the data quality of the systems. One effective way to identify poor-quality data is through anomaly detection systems, which provide specific information that helps to decide whether a device is malfunctioning, a critical event is occurring, or the system's security is being breached. Using early anomaly detection mechanisms prevents the IIoT system from being influenced by anomalies in decision-making. Identifying the origin of the anomaly (e.g., event, failure, or attack) supports the user in making effective decisions about handling the data or identifying the device that exhibits abnormal behavior. However, implementing anomaly detection systems is not easy since various factors must be defined, such as what method to use for the best performance. What information must we process to detect and classify anomalies? Which devices have to be monitored to detect anomalies? Which device of the IIoT system will be in charge of executing the anomaly detection algorithm? Hence, in this paper, we performed a state-of-the-art review, including 99 different articles aiming to identify the answer of various authors to these questions. We also highlighted works on IIoT anomaly detection and classification, used methods, and open challenges. We found that automatic anomaly classification in IIoT is an open research topic, and additional information from the context of the application is rarely used to facilitate anomaly detection. © 2023 The Author(s) | eng |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159629184&doi=10.1016%2fj.iswa.2023.200232&partnerID=40&md5=9688e1c43f6bb8129616174e7a7417a6 | |
dc.source | Intell. Syst. Applications. | |
dc.source | Intelligent Systems with Applications | eng |
dc.subject | Anomaly classification | eng |
dc.subject | Anomaly detection | eng |
dc.subject | Context-awareness | eng |
dc.subject | Context-information | eng |
dc.subject | IIoT | eng |
dc.subject | Industrial Internet of things | eng |
dc.title | Anomaly classification in industrial Internet of things: A review | eng |
dc.type | Review | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ingeniería de Telecomunicaciones | spa |
dc.type.spa | Revisión | |
dc.identifier.doi | 10.1016/j.iswa.2023.200232 | |
dc.relation.citationvolume | 18 | |
dc.publisher.faculty | Facultad de Ingenierías | spa |
dc.affiliation | Rodríguez, M., Universidad de Antioquia, Medellin, Colombia | |
dc.affiliation | Tobón, D.P., Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Múnera, D., Universidad de Antioquia, Medellin, Colombia | |
dc.relation.references | Abu Al-Haija, Q., Al Badawi, A., Bojja, G.R., Boost-defence for resilient iot networks: A head-to-toe approach (2022) Expert Systems, 39 (10) | |
dc.relation.references | Abu Al-Haija, Q., Al-Dala'ien, M., Elba-iot: An ensemble learning model for botnet attack detection in iot networks (2022) Journal of Sensor and Actuator Networks, 11 (1), p. 18 | |
dc.relation.references | Abu Al-Haija, Q., Zein-Sabatto, S., An efficient deep-learning-based detection and classification system for cyber-attacks in iot communication networks (2020) Electronics, 9 (12), p. 2152 | |
dc.relation.references | Ahakonye, L.A.C., Nwakanma, C.I., Lee, J.-M., Kim, D.-S., Scada intrusion detection scheme exploiting the fusion of modified decision tree and chi-square feature selection (2023) Internet of Things, 21 | |
dc.relation.references | Ahakonye, L.A.C., Nwakanma, C.I., Lee, J.M., Kim, D.-S., Agnostic ch-dt technique for scada network high-dimensional data-aware intrusion detection system (2023) IEEE Internet of Things Journal | |
dc.relation.references | Al-Hawawreh, M., Sitnikova, E., Industrial Internet of things based ransomware detection using stacked variational neural network (2019) Proceedings of the 3rd international conference on big data and Internet of things, pp. 126-130 | |
dc.relation.references | Al-Hawawreh, M., Sitnikova, E., den Hartog, F., An efficient intrusion detection model for edge system in brownfield industrial Internet of things (2019) Proceedings of the 3rd international conference on big data and Internet of things, pp. 83-87 | |
dc.relation.references | Albulayhi, K., Abu Al-Haija, Q., Alsuhibany, S.A., Jillepalli, A.A., Ashrafuzzaman, M., Sheldon, F.T., Iot intrusion detection using machine learning with a novel high performing feature selection method (2022) Applied Sciences, 12 (10), p. 5015 | |
dc.relation.references | Alexopoulos, K., Sipsas, K., Xanthakis, E., Makris, S., Mourtzis, D., An industrial Internet of things based platform for context-aware information services in manufacturing (2018) International Journal of Computer Integrated Manufacturing, 31 (11), pp. 1111-1123 | |
dc.relation.references | Alruwaili, F.F., Intrusion detection and prevention in industrial iot: A technological survey (2021) 2021 international conference on electrical, computer, communications and mechatronics engineering (ICECCME), pp. 1-5. , IEEE | |
dc.relation.references | Angelopoulos, A., Michailidis, E.T., Nomikos, N., Trakadas, P., Hatziefremidis, A., Voliotis, S., Zahariadis, T., Tackling faults in the industry 4.0 era—a survey of machine-learning solutions and key aspects (2020) Sensors, 20 (1), p. 109 | |
dc.relation.references | Anton, S.D., Fraunholz, D., Schotten, H.D., Teuber, S., A question of context: Enhancing intrusion detection by providing context information (2017) 2017 Internet of things business models, users, and networks, pp. 1-8. , IEEE | |
dc.relation.references | Anton, S.D.D., Lohfink, A.P., Garth, C., Schotten, H.D., Security in process: Detecting attacks in industrial process data (2019) Proceedings of the third central European cybersecurity conference, pp. 1-6 | |
dc.relation.references | Aoudi, W., Almgren, M., A scalable specification-agnostic multi-sensor anomaly detection system for iiot environments (2020) International Journal of Critical Infrastructure Protection, 30, pp. 1-8 | |
dc.relation.references | Aranda, J.A.S., dos Santos Costa, R., de Vargas, V.W., da Silva Pereira, P.R., Barbosa, J.L.V., Vianna, M.P., Context-aware edge computing and Internet of things in smart grids: A systematic mapping study (2022) Computers & Electrical Engineering, 99 | |
dc.relation.references | Aruquipa, G., Diaz, F., An iot architecture based on the control of bio inspired manufacturing system for the detection of anomalies with vibration sensors (2022) Procedia Computer Science, 200, pp. 438-450 | |
dc.relation.references | Ba, A., Lorenzi, F., Ploennigs, J., Monitoring of iot systems at the edges with transformer-based graph convolutional neural networks (2022) 2022 IEEE international conference on edge computing and communications, pp. 41-49. , IEEE EDGE | |
dc.relation.references | Ba, A., Lynch, K., Ploennigs, J., Schaper, B., Lohse, C., Lorenzi, F., Automated configuration of heterogeneous graph neural networks with a semantic math parser for iot systems (2022) IEEE Internet of Things Journal, 10 (2), pp. 1042-1052 | |
dc.relation.references | Bae, G., Jang, S., Kim, M., Joe, I., Autoencoder-based on anomaly detection with intrusion scoring for smart factory environments (2018) International conference on parallel and distributed computing: Applications and technologies, pp. 414-423. , Springer | |
dc.relation.references | Bernieri, G., Conti, M., Pozzan, G., Amon: An automaton monitor for industrial cyber-physical security (2019) Proceedings of the 14th international conference on availability, reliability and security, pp. 1-10 | |
dc.relation.references | Bernieri, G., Conti, M., Turrin Kingfisher, F., An industrial security framework based on variational autoencoders (2019) Proceedings of the 1st workshop on machine learning on edge in sensor systems, pp. 7-12 | |
dc.relation.references | Bernieri, G., Pascucci, F., Improving security in industrial Internet of things: A distributed intrusion detection methodology (2019) Security and privacy trends in the industrial Internet of things, pp. 161-179. , Springer | |
dc.relation.references | Bodo, R., Bertocco, M., Bianchi, A., Feature ranking under industrial constraints in continuous monitoring applications based on machine learning techniques (2020) 2020 IEEE international instrumentation and measurement technology conference (I2MTC), pp. 1-6. , IEEE | |
dc.relation.references | Botta, A., De Donato, W., Persico, V., Pescapé, A., Integration of cloud computing and Internet of things: A survey (2016) Future Generations Computer Systems, 56, pp. 684-700 | |
dc.relation.references | Boyes, H., Hallaq, B., Cunningham, J., Watson, T., The industrial Internet of things (iiot): An analysis framework (2018) Computers in Industry, 101, pp. 1-12 | |
dc.relation.references | Cai, J., Wang, Q., Luo, J., Liu, Y., Liao, L., Capbad: Content-agnostic, payload-based anomaly detector for industrial control protocols (2021) IEEE Internet of Things Journal | |
dc.relation.references | Çavdar, T., Ebrahimpour, N., Kakız, M.T., Günay, F.B., Decision-making for the anomalies in iiots based on 1d convolutional neural networks and Dempster–Shafer theory (ds-1dcnn) (2023) Journal of Supercomputing, 79 (2), pp. 1683-1704 | |
dc.relation.references | Chen, Z., Chen, D., Zhang, X., Yuan, Z., Cheng, X., Learning graph structures with transformer for multivariate time-series anomaly detection in iot (2021) IEEE Internet of Things Journal, 9 (12), pp. 9179-9189 | |
dc.relation.references | Cui, J.-F., Xia, H., Zhang, R., Hu, B.-X., Cheng, X.-G., Optimization scheme for intrusion detection scheme gbdt in edge computing center (2021) Computer Communications, 168, pp. 136-145 | |
dc.relation.references | Dang, T.-B., Le, D.-T., Kim, M., Choo, H., Neighboring information exploitation for anomaly detection in intelligent iot (2021) International conference on future data and security engineering, pp. 260-271. , Springer | |
dc.relation.references | De, S., Bermudez-Edo, M., Xu, H., Cai, Z., Deep generative models in the industrial Internet of things: A survey (2022) IEEE Transactions on Industrial Informatics | |
dc.relation.references | De Vita, F., Bruneo, D., Das, S.K., On the use of a full stack hardware/software infrastructure for sensor data fusion and fault prediction in industry 4.0 (2020) Pattern Recognition Letters, 138, pp. 30-37 | |
dc.relation.references | De Vita, F., Bruneo, D., Das, S.K., A novel data collection framework for telemetry and anomaly detection in industrial iot systems (2020) 2020 IEEE/ACM fifth international conference on Internet-of-things design and implementation (IoTDI), pp. 245-251. , IEEE | |
dc.relation.references | De Vita, F., Bruneo, D., Das, S.K., A semi-supervised Bayesian anomaly detection technique for diagnosing faults in industrial iot systems (2021) 2021 IEEE international conference on smart computing (SMARTCOMP), pp. 31-38. , IEEE | |
dc.relation.references | DeMedeiros, K., Hendawi, A., Alvarez, M., A survey of ai-based anomaly detection in iot and sensor networks (2023) Sensors, 23 (3), p. 1352 | |
dc.relation.references | Demertzis, K., Iliadis, L., Tziritas, N., Kikiras, P., Anomaly detection via blockchained deep learning smart contracts in industry 4.0 (2020) Neural Computing & Applications, 32 (23), pp. 17361-17378 | |
dc.relation.references | Douiba, M., Benkirane, S., Guezzaz, A., Azrour, M., An improved anomaly detection model for iot security using decision tree and gradient boosting (2023) Journal of Supercomputing, 79 (3), pp. 3392-3411 | |
dc.relation.references | Dzaferagic, M., Marchetti, N., Macaluso, I., Fault detection and classification in industrial iot in case of missing sensor data (2021), https://doi.org/10.1109/JIOT.2021.3116785 | |
dc.relation.references | Ehsani-Besheli, F., Zarandi, H.R., Context-aware anomaly detection in embedded systems (2017) Advances in dependability engineering of complex systems, pp. 151-165. , Springer | |
dc.relation.references | Elnour, M., Meskin, N., Khan, K., Jain, R., Application of data-driven attack detection framework for secure operation in smart buildings (2021) Sustainable Cities and Society, 69 | |
dc.relation.references | Enăchescu, C., Sándor, H., Genge, B., A multi-model-based approach to detect cyber stealth attacks in industrial Internet of things (2019) 2019 international conference on software, telecommunications and computer networks (SoftCOM), pp. 1-6. , IEEE | |
dc.relation.references | Fahim, M., Sillitti, A., Anomaly detection, analysis and prediction techniques in iot environment: A systematic literature review (2019) IEEE Access, 7, pp. 81664-81681 | |
dc.relation.references | Faisal, M.A., Cardenas, A.A., Wool, A., Profiling communications in industrial ip networks: Model complexity and anomaly detection (2019) Security and privacy trends in the industrial Internet of things, pp. 139-160. , Springer | |
dc.relation.references | Feng, Y., Chen, J., Liu, Z., Lv, H., Wang, J., Full graph autoencoder for one-class group anomaly detection of iiot system (2022) IEEE Internet of Things Journal, 9 (21), pp. 21886-21898 | |
dc.relation.references | Ferrari, P., Rinaldi, S., Sisinni, E., Colombo, F., Ghelfi, F., Maffei, D., Malara, M., Performance evaluation of full-cloud and edge-cloud architectures for industrial iot anomaly detection based on deep learning (2019) 2019 II workshop on metrology for industry 4.0 and IoT (MetroInd4. 0&IoT), pp. 420-425. , IEEE | |
dc.relation.references | Friha, O., Ferrag, M.A., Shu, L., Maglaras, L., Choo, K.-K.R., Nafaa, M., Felids: Federated learning-based intrusion detection system for agricultural Internet of things (2022) Journal of Parallel and Distributed Computing | |
dc.relation.references | Gai, F., Zhang, J., Zhu, P., Jiang, X., Multidimensional trust-based anomaly detection system in Internet of things (2017) International conference on wireless algorithms, systems, and applications, pp. 302-313. , Springer | |
dc.relation.references | Garg, S., Kaur, K., Batra, S., Kaddoum, G., Kumar, N., Boukerche, A., A multi-stage anomaly detection scheme for augmenting the security in iot-enabled applications (2020) Future Generations Computer Systems, 104, pp. 105-118 | |
dc.relation.references | Garitano, I., Iturbe, M., Ezpeleta, E., Zurutuza, U., Who's there? Evaluating data source integrity and veracity in iiot using multivariate statistical process control (2019) Security and privacy trends in the industrial Internet of things, pp. 181-198. , Springer | |
dc.relation.references | Garmaroodi, M.S.S., Farivar, F., Haghighi, M.S., Shoorehdeli, M.A., Jolfaei, A., Detection of anomalies in industrial iot systems by data mining: Study of christ osmotron water purification system (2020) IEEE Internet of Things Journal | |
dc.relation.references | Genge, B., Haller, P., Enăchescu, C., Anomaly detection in aging industrial Internet of things (2019) IEEE Access, 7, pp. 74217-74230 | |
dc.relation.references | Ghaeini, H.R., Antonioli, D., Brasser, F., Sadeghi, A.-R., Tippenhauer, N.O., State-aware anomaly detection for industrial control systems (2018) Proceedings of the 33rd annual ACM symposium on applied computing, pp. 1620-1628 | |
dc.relation.references | Ghosh, N., Maity, K., Paul, R., Maity, S., Outlier detection in sensor data using machine learning techniques for iot framework and wireless sensor networks: A brief study (2019) 2019 international conference on applied machine learning (ICAML), pp. 187-190. , IEEE | |
dc.relation.references | Gorbenko, A., Popov, V., Abnormal behavioral pattern detection in closed-loop robotic systems for zero-day deceptive threats (2020) 2020 international conference on industrial engineering, applications and manufacturing (ICIEAM), pp. 1-6. , IEEE | |
dc.relation.references | Halder, S., Newe, T., Radio fingerprinting for anomaly detection using federated learning in lora-enabled industrial Internet of things (2023) Future generation computer systems | |
dc.relation.references | Hansch, G., Schneider, P., Brost, G.S., Deriving impact-driven security requirements and monitoring measures for industrial iot (2019) Proceedings of the 5th on cyber-physical system security workshop, pp. 37-45 | |
dc.relation.references | Hashmat, F., Abbas, S.G., Hina, S., Shah, G.A., Bakhshi, T., Abbas, W., An automated context-aware iot vulnerability assessment rule-set generator (2022) Computer Communications, 186, pp. 133-152 | |
dc.relation.references | Hayes, M.A., Capretz, M.A., Contextual anomaly detection in big sensor data (2014) 2014 IEEE international congress on big data, pp. 64-71. , IEEE | |
dc.relation.references | He, J., Kong, L., Frondelius, T., Silvén, O., Juntti, M., Decision triggered data transmission and collection in industrial Internet of things (2020) 2020 IEEE wireless communications and networking conference (WCNC), pp. 1-5. , IEEE | |
dc.relation.references | Hu, J., Kaur, K., Lin, H., Wang, X., Hassan, M.M., Razzak, I., Hammoudeh, M., Intelligent anomaly detection of trajectories for iot empowered maritime transportation systems (2022) IEEE Transactions on Intelligent Transportation Systems | |
dc.relation.references | Huong, T.T., Bac, T.P., Long, D.M., Luong, T.D., Dan, N.M., Thang, B.D., Tran, K.P., Detecting cyberattacks using anomaly detection in industrial control systems: A federated learning approach (2021) Computers in Industry, 132 | |
dc.relation.references | Karkouch, A., Mousannif, H., Al Moatassime, H., Noel, T., Data quality in Internet of things: A state-of-the-art survey (2016) Journal of Network and Computer Applications, 73, pp. 57-81 | |
dc.relation.references | Ketonen, V., Blech, J.O., Anomaly detection for injection molding using probabilistic deep learning (2021) 2021 4th IEEE international conference on industrial cyber-physical systems (ICPS), pp. 70-77. , IEEE | |
dc.relation.references | Khan, I.A., Moustafa, N., Pi, D., Sallam, K.M., Zomaya, A.Y., Li, B., A new explainable deep learning framework for cyber threat discovery in industrial iot networks (2021) IEEE Internet of Things Journal | |
dc.relation.references | Kim, D., Yang, H., Chung, M., Cho, S., Kim, H., Kim, M., Kim, K., Kim, E., Squeezed convolutional variational autoencoder for unsupervised anomaly detection in edge device industrial Internet of things (2018) 2018 international conference on information and computer technologies (icict), pp. 67-71. , IEEE | |
dc.relation.references | Kim, J., Kang, H., Kang, P., Time-series anomaly detection with stacked transformer representations and 1d convolutional network (2023) Engineering Applications of Artificial Intelligence, 120 | |
dc.relation.references | Kong, F., Li, J., Jiang, B., Wang, H., Song, H., Integrated generative model for industrial anomaly detection via bi-directional lstm and attention mechanism (2021) IEEE Transactions on Industrial Informatics | |
dc.relation.references | Kozik, R., Pawlicki, M., Choraś, M., A new method of hybrid time window embedding with transformer-based traffic data classification in iot-networked environment (2021) Pattern Analysis & Applications, 24 (4), pp. 1441-1449 | |
dc.relation.references | Krundyshev, V., Kalinin, M., Hybrid neural network framework for detection of cyber attacks at smart infrastructures (2019) Proceedings of the 12th international conference on security of information and networks, pp. 1-7 | |
dc.relation.references | Kumar, A., Shridhar, M., Swaminathan, S., Lim, T.J., Machine learning-based early detection of iot botnets using network-edge traffic (2022) Computers & Security | |
dc.relation.references | Kumar, A.S., Raja, S., Pritha, N., Raviraj, H., Lincy, R.B., Rubia, J.J., An adaptive transformer model for anomaly detection in wireless sensor networks in real-time (2023) Measurement: Sensors, 25 | |
dc.relation.references | Langone, R., Cuzzocrea, A., Skantzos, N., Interpretable anomaly prediction: Predicting anomalous behavior in industry 4.0 settings via regularized logistic regression tools (2020) Data & Knowledge Engineering, 130 | |
dc.relation.references | Li, X., Xu, M., Vijayakumar, P., Kumar, N., Liu, X., Detection of low-frequency and multi-stage attacks in industrial Internet of things (2020) IEEE Transactions on Vehicular Technology, 69 (8), pp. 8820-8831 | |
dc.relation.references | Li, Y., Xu, Y., Liu, Z., Hou, H., Zheng, Y., Xin, Y., Zhao, Y., Cui, L., Robust detection for network intrusion of industrial iot based on multi-cnn fusion (2020) Measurement, 154 | |
dc.relation.references | Li, Z., Ding, X., Wang, H., An effective constraint-based anomaly detection approach on multivariate time series (2020) Asia-Pacific web (APWeb) and web-age information management (WAIM) joint international conference on web and big data, pp. 61-69. , Springer | |
dc.relation.references | Liu, S., Chen, X., Peng, X., Xiao, R., Network log anomaly detection based on gru and svdd (2019) 2019 IEEE intl conf on parallel & distributed processing with applications, big data & cloud computing, sustainable computing & communications, social computing & networking (ISPA/BDCloud/SocialCom/SustainCom), pp. 1244-1249. , IEEE | |
dc.relation.references | Liu, Y., Garg, S., Nie, J., Zhang, Y., Xiong, Z., Kang, J., Hossain, M.S., Deep anomaly detection for time-series data in industrial iot: A communication-efficient on-device federated learning approach (2020) IEEE Internet of Things Journal, 8 (8), pp. 6348-6358 | |
dc.relation.references | Liu, Y., Kumar, N., Xiong, Z., Lim, W.Y.B., Kang, J., Niyato, D., Communication-efficient federated learning for anomaly detection in industrial Internet of things (2020) GLOBECOM 2020-2020 IEEE global communications conference, pp. 1-6. , IEEE | |
dc.relation.references | Liu, Y., Zhi, T., Shen, M., Wang, L., Li, Y., Wan, M., Software-defined ddos detection with information entropy analysis and optimized deep learning (2022) Future Generations Computer Systems, 129, pp. 99-114 | |
dc.relation.references | Madhawa, S., Balakrishnan, P., Arumugam, U., Employing invariants for anomaly detection in software defined networking based industrial Internet of things (2018) Journal of Intelligent & Fuzzy Systems, 35 (2), pp. 1267-1279 | |
dc.relation.references | Miciolino, E.E., Setola, R., Bernieri, G., Panzieri, S., Pascucci, F., Polycarpou, M.M., Fault diagnosis and network anomaly detection in water infrastructures (2017) IEEE Design & Test, 34 (4), pp. 44-51 | |
dc.relation.references | Mohamudally, N., Peermamode-Mohaboob, M., Building an anomaly detection engine (ade) for iot smart applications (2018) Procedia Computer Science, 134, pp. 10-17 | |
dc.relation.references | Moradbeikie, A., Jamshidi, K., Bohlooli, A., Garcia, J., Masip-Bruin, X., An iiot based ics to improve safety through fast and accurate hazard detection and differentiation (2020) IEEE Access, 8, pp. 206942-206957 | |
dc.relation.references | Mukherjee, D., A novel strategy for locational detection of false data injection attack (2022) Sustainable Energy, Grids and Networks | |
dc.relation.references | Muna, A.-H., Moustafa, N., Sitnikova, E., Identification of malicious activities in industrial Internet of things based on deep learning models (2018) Journal of Information Security and Applications, 41, pp. 1-11 | |
dc.relation.references | Nedeljkovic, D., Jakovljevic, Z., Cnn based method for the development of cyber-attacks detection algorithms in industrial control systems (2022) Computers & Security, 114 | |
dc.relation.references | Nizam, H., Zafar, S., Lv, Z., Wang, F., Hu, X., Real-time deep anomaly detection framework for multivariate time-series data in industrial iot (2022) IEEE Sensors Journal, 22 (23), pp. 22836-22849 | |
dc.relation.references | Ouyang, Z., Sun, X., Chen, J., Yue, D., Zhang, T., Multi-view stacking ensemble for power consumption anomaly detection in the context of industrial Internet of things (2018) IEEE Access, 6, pp. 9623-9631 | |
dc.relation.references | Pan, J., Ji, W., Zhong, B., Wang, P., Wang, X., Chen Duma, J., Dual mask for multivariate time series anomaly detection (2022) IEEE Sensors Journal | |
dc.relation.references | Park, S.H., Park, H.J., Choi, Y.-J., Rnn-based prediction for network intrusion detection (2020) 2020 international conference on artificial intelligence in information and communication (ICAIIC), pp. 572-574. , IEEE | |
dc.relation.references | Peng, Y., Tan, A., Wu, J., Bi, Y., Hierarchical edge computing: A novel multi-source multi-dimensional data anomaly detection scheme for industrial Internet of things (2019) IEEE Access, 7, pp. 111257-111270 | |
dc.relation.references | Petersen, K., Vakkalanka, S., Kuzniarz, L., Guidelines for conducting systematic mapping studies in software engineering: An update (2015) Information and Software Technology, 64, pp. 1-18 | |
dc.relation.references | Raposo, D., Rodrigues, A., Sinche, S., Silva, J.S., Boavida, F., Securing wirelesshart: Monitoring, exploring and detecting new vulnerabilities (2018) 2018 IEEE 17th international symposium on network computing and applications (NCA), pp. 1-9. , IEEE | |
dc.relation.references | Raposo, D., Rodrigues, A., Sinche, S., Silva, J.S., Boavida, F., Security and fault detection in in-node components of iiot constrained devices (2019) 2019 IEEE 44th conference on local computer networks (LCN), pp. 282-290. , IEEE | |
dc.relation.references | Razzak, I., Zafar, K., Imran, M., Xu, G., Randomized nonlinear one-class support vector machines with bounded loss function to detect of outliers for large scale iot data (2020) Future Generations Computer Systems, 112, pp. 715-723 | |
dc.relation.references | Rey, V., Sánchez, P.M.S., Celdrán, A.H., Bovet, G., Federated learning for malware detection in iot devices (2022) Computer Networks | |
dc.relation.references | Rousopoulou, V., Vafeiadis, T., Nizamis, A., Iakovidis, I., Samaras, L., Kirtsoglou, A., Georgiadis, K., Tzovaras, D., Cognitive analytics platform with ai solutions for anomaly detection (2022) Computers in Industry, 134 | |
dc.relation.references | Sankaran, K.S., Kim, B.-H., Deep learning based energy efficient optimal rmc-cnn model for secured data transmission and anomaly detection in industrial iot (2023) Sustainable Energy Technologies and Assessments, 56 | |
dc.relation.references | Saurav, S., Malhotra, P., TV, V., Gugulothu, N., Vig, L., Agarwal, P., Shroff, G., Online anomaly detection with concept drift adaptation using recurrent neural networks (2018) Proceedings of the acm India joint international conference on data science and management of data, pp. 78-87 | |
dc.relation.references | Savic, M., Lukic, M., Danilovic, D., Bodroski, Z., Bajović, D., Mezei, I., Vukobratovic, D., Jakovetić, D., Deep learning anomaly detection for cellular iot with applications in smart logistics (2021) IEEE Access, 9, pp. 59406-59419 | |
dc.relation.references | Schneider, P., Böttinger, K., High-performance unsupervised anomaly detection for cyber-physical system networks (2018) Proceedings of the 2018 workshop on cyber-physical systems security and privacy, pp. 1-12 | |
dc.relation.references | Seo, C.-B., Lee, G., Lee, Y., Seo, S.-H., Echo-guard: Acoustic-based anomaly detection system for smart manufacturing environments (2021) International conference on information security applications, pp. 64-75. , Springer | |
dc.relation.references | Shi, Y., Li, F., Song, W., Li, X.-Y., Ye, J., Energy audition based cyber-physical attack detection system in iot (2019) Proceedings of the ACM Turing celebration conference-China, pp. 1-5 | |
dc.relation.references | Sisinni, E., Saifullah, A., Han, S., Jennehag, U., Gidlund, M., Industrial Internet of things: Challenges, opportunities, and directions (2018) IEEE Transactions on Industrial Informatics, 14 (11), pp. 4724-4734 | |
dc.relation.references | Su, J., He, S., Wu, Y., Features selection and prediction for iot attacks (2022) High-Confidence Computing, 2 (2) | |
dc.relation.references | Sun, P., Yuepeng, E., Li, T., Wu, Y., Ge, J., You, J., Wu, B., Context-aware learning for anomaly detection with imbalanced log data (2020) 2020 IEEE 22nd international conference on high performance computing and communications, IEEE 18th international conference on smart city, IEEE 6th international conference on data science and systems (HPCC/SmartCity/DSS), pp. 449-456. , IEEE | |
dc.relation.references | Tandiya, N., Jauhar, A., Marojevic, V., Reed, J.H., Deep predictive coding neural network for rf anomaly detection in wireless networks (2018) 2018 IEEE international conference on communications workshops (ICC workshops), pp. 1-6. , IEEE | |
dc.relation.references | Tertytchny, G., Nicolaou, N., Michael, M.K., Classifying network abnormalities into faults and attacks in iot-based cyber physical systems using machine learning (2020) Microprocessors and Microsystems, 77 | |
dc.relation.references | Truong, H.T., Ta, B.P., Le, Q.A., Nguyen, D.M., Le, C.T., Nguyen, H.X., Do, H.T., Tran, K.P., Light-weight federated learning-based anomaly detection for time-series data in industrial control systems (2022) Computers in Industry, 140 | |
dc.relation.references | Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I., Attention is all you need (2017) Advances in Neural Information Processing Systems, 30 | |
dc.relation.references | Wang, C., Iot anomaly detection method in intelligent manufacturing industry based on trusted evaluation (2020) The International Journal of Advanced Manufacturing Technology, 107 (3), pp. 993-1005 | |
dc.relation.references | Wang, C., Wang, B., Liu, H., Qu, H., Anomaly detection for industrial control system based on autoencoder neural network (2020) Wireless Communications and Mobile Computing, 2020 | |
dc.relation.references | Wang, Y., Perry, M., Whitlock, D., Sutherland, J.W., Detecting anomalies in time series data from a manufacturing system using recurrent neural networks (2020) Journal of Manufacturing Systems | |
dc.relation.references | Wang, S.-J., Cai, C.X., Tseng, Y.-W., Li, K.S.-M., Feature selection for malicious traffic detection with machine learning (2020) 2020 international computer symposium (ICS), pp. 414-419. , IEEE | |
dc.relation.references | Wang, X., Garg, S., Lin, H., Hu, J., Kaddoum, G., Piran, M.J., Hossain, M.S., Towards accurate anomaly detection in industrial Internet-of-things using hierarchical federated learning (2021) IEEE Internet of Things Journal | |
dc.relation.references | Wang, H., Mumtaz, S., Li, H., Liu, J., Yang, F., An identification strategy for unknown attack through the joint learning of space–time features (2021) Future Generations Computer Systems, 117, pp. 145-154 | |
dc.relation.references | Wang, X., Garg, S., Lin, H., Hu, J., Kaddoum, G., Piran, M.J., Hossain, M.S., Toward accurate anomaly detection in industrial Internet of things using hierarchical federated learning (2021) IEEE Internet of Things Journal, 9 (10), pp. 7110-7119 | |
dc.relation.references | Wang, X., Pi, D., Zhang, X., Liu, H., Guo, C., Variational transformer-based anomaly detection approach for multivariate time series (2022) Measurement, 191 | |
dc.relation.references | Wangwang, W., Yunchun, Z., Chengjie, L., Xuchenming, S., Yuting, Z., Xin, Z., Network traffic oriented malware detection in iot (Internet-of-things) (2021) 2021 international conference on networking and network applications (NaNA), pp. 301-307. , IEEE | |
dc.relation.references | Weinger, B., Kim, J., Sim, A., Nakashima, M., Moustafa, N., Wu, K.J., Enhancing iot anomaly detection performance for federated learning (2022) Digital Communications and Networks | |
dc.relation.references | Wu, D., Jiang, Z., Xie, X., Wei, X., Yu, W., Li, R., Lstm learning with Bayesian and Gaussian processing for anomaly detection in industrial iot (2019) IEEE Transactions on Industrial Informatics, 16 (8), pp. 5244-5253 | |
dc.relation.references | Wu, Y., Dai, H.-N., Tang, H., Graph neural networks for anomaly detection in industrial Internet of things (2021) IEEE Internet of Things Journal | |
dc.relation.references | Yang, H., Liang, S., Ni, J., Li, H., Shen, X.S., Secure and efficient k nn classification for industrial Internet of things (2020) IEEE Internet of Things Journal, 7 (11), pp. 10945-10954 | |
dc.relation.references | Yang, K., Shi, Y., Yu, Z., Yang, Q., Sangaiah, A.K., Zeng, H., Stacked one-class broad learning system for intrusion detection in industry 4.0 (2022) IEEE Transactions on Industrial Informatics | |
dc.relation.references | Yang, Y., Yang, X., Heidari, M., Khan, M.A., Srivastava, G., Khosravi, M., Qi, L., Astream: Data-stream-driven scalable anomaly detection with accuracy guarantee in iiot environment (2022) IEEE Transactions on Network Science and Engineering | |
dc.relation.references | Younan, M., Houssein, E.H., Elhoseny, M., Ali, A.A., Challenges and recommended technologies for the industrial Internet of things: A comprehensive review (2020) Measurement, 151 | |
dc.relation.references | Zeyu, H., Geming, X., Zhaohang, W., Sen, Y., Survey on edge computing security (2020) 2020 international conference on big data, artificial intelligence and Internet of things engineering (ICBAIE), pp. 96-105. , IEEE | |
dc.relation.references | Zhan, P., Wang, S., Wang, J., Qu, L., Wang, K., Hu, Y., Li, X., Temporal anomaly detection on iiot-enabled manufacturing (2021) Journal of Intelligent Manufacturing, pp. 1-10 | |
dc.relation.references | Zhang, X., Li, J., Zhang, D., Gao, J., Jiang, H., Research on feature selection for cyber attack detection in industrial Internet of things (2020) Proceedings of the 2020 international conference on cyberspace innovation of advanced technologies, pp. 256-262 | |
dc.relation.references | Zhou, X., Hu, Y., Liang, W., Ma, J., Jin, Q., Variational lstm enhanced anomaly detection for industrial big data (2020) IEEE Transactions on Industrial Informatics, 17 (5), pp. 3469-3477 | |
dc.relation.references | Zugasti, E., Iturbe, M., Garitano, I., Zurutuza, U., Null is not always empty: Monitoring the null space for field-level anomaly detection in industrial iot environments (2018) 2018 global Internet of things summit (GIoTS), pp. 1-6. , IEEE | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |