Show simple item record

dc.contributor.authorRestrepo S
dc.contributor.authorDuque M.P
dc.contributor.authorBello S
dc.contributor.authorTirado L.M
dc.contributor.authorEcheverría F
dc.contributor.authorZuleta A.A
dc.contributor.authorCastaño J.G
dc.contributor.authorCorrea E.
dc.description.abstractAcrylonitrile butadiene styrene (ABS) is one of the most widely used polymers in the manufacture of different parts in engineering applications. This polymer is sometimes subjected to metallizing processes that seek to modify the surface properties of the accessories. These processes often require the use of chromium and palladium. Some of the accessories in which ABS is used are subjected during their day-to-day use to environments in which they are prone to colonization of bacteria, generating multiple problems that affect both human health and the useful life of different equipment and devices. Recently, there have been great developments of nanoparticles with antibacterial properties, such as zinc oxides. However, these nanoparticles have not yet been incorporated and evaluated in metal coatings on ABS substrates with a view to conferring such properties on the polymer. This work implements the use of an electroless antibacterial Ni-P coating, modified with zinc oxide nanoparticles through processes free of chromium and palladium, on ABS substrates. The results showed that the addition of zinc oxide nanoparticles in quantities of 0.5 g/L and above in the electroless bath confer antibacterial characteristics on the surface for S. aureus under JIS Z 2801 standard. Through the methodology developed, the future development of 3D printed parts with metallized coating is possible, implementing processes chrome and palladium free, expanding the applications and uses of these. © 2023, The Author(s).eng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.sourceInt J Adv Manuf Technol
dc.sourceInternational Journal of Advanced Manufacturing Technologyeng
dc.subjectElectroless nickel coatingseng
dc.subjectZnO2 nanoparticleseng
dc.titleAntibacterial evaluation of electroless Ni–P coating with ZnO nanoparticles on 3D printed ABSeng
dc.publisher.programIngeniería de Materialesspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationRestrepo, S., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, Medellín, Colombia, Grupo de Investigación Industrial en Diseño de Materiales a partir de Minerales y Procesos – IDIMAP, Sumicol S.A.S, Sabaneta, Colombia
dc.affiliationDuque, M.P., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, Medellín, Colombia
dc.affiliationBello, S., Materiales con Impacto – MAT&MPAC, Universidad de Medellín, Medellín, Colombia
dc.affiliationTirado, L.M., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Circular 1 No 70-01, Medellín, Colombia
dc.affiliationEcheverría, F., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, Medellín, Colombia
dc.affiliationZuleta, A.A., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Circular 1 No 70-01, Medellín, Colombia
dc.affiliationCastaño, J.G., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, Medellín, Colombia
dc.affiliationCorrea, E., Materiales con Impacto – MAT&MPAC, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesJia, Y., Chen, J., Asahara, H., Photooxidation of the ABS resin surface for electroless metal plating (2020) Polymer, 200, p. 122592
dc.relation.referencesPérez Fernández, M., (2018) Nueva generación de materiales plásticos basados en ABS de altas prestaciones técnicas o más sostenibles con el medio ambiente, ,, Universidad Autónoma de Barcelona. Barcelona
dc.relation.referencesBlyweert, P., Nicolas, V., Fierro, V., Celzard, A., 3D printing of carbon-based materials: a review (2021) Carbon N Y, 183, pp. 449-485
dc.relation.referencesBazzaoui, M., Martins, J.I., Bazzaoui, E.A., A simple method for acrylonitrile butadiene styrene metallization (2013) Surf Coat Technol, 224, pp. 71-76
dc.relation.referencesJones, K.E., Patel, N.G., Levy, M.A., Global trends in emerging infectious diseases (2008) Nature, 451, pp. 990-993
dc.relation.referencesCloutier, M., Mantovani, D., Rosei, F., Antibacterial coatings: challenges, perspectives, and opportunities (2015) Trends Biotechnol, 33, pp. 637-652
dc.relation.referencesOgunsona, E.O., Muthuraj, R., Ojogbo, E., Engineered nanomaterials for antimicrobial applications: a review (2020) Appl Mater Today, 18, p. 100473
dc.relation.referencesVu, T.V., Nguyen, V.T., Nguyen-Tri, P., Antibacterial nanocomposite coatings (2020) Nanotoxicity, pp. 355-364. , Elsevier
dc.relation.referencesSahoo, P., Das, S.K., Tribology of electroless nickel coatings - a review (2011) Mater Des, 32, pp. 1760-1775
dc.relation.referencesSudagar, J., Lian, J., Sha, W., Electroless nickel, alloy, composite and nano coatings - a critical review (2013) J Alloys Compd, 571, pp. 183-204
dc.relation.referencesAlgul, H., Uysal, M., Alp, A., A comparative study on morphological, mechanical and tribological properties of electroless NiP, NiB and NiBP coatings (2021) Appl Surf Sci, 4, p. 100089
dc.relation.referencesZhang, B., Nano electroless plating (2016) Amorphous and Nano Alloys Electroless Depositions, Chemical I, pp. 141-289. ,, Elsevier
dc.relation.referencesTamilarasan, T.R., Rajendran, R., Siva Shankar, M., Wear and scratch behaviour of electroless Ni-P-nano-TiO2: effect of surfactants (2016) Wear, 346-347, pp. 148-157
dc.relation.referencesDong, D., Chen, X.H., Xiao, W.T., Preparation and properties of electroless Ni-P-SiO2 composite coatings (2009) Appl Surf Sci, 255, pp. 7051-7055
dc.relation.referencesZhou, G., Ding, H., Zhou, F., Zhang, Y., Structure and mechanical properties of Ni-P-nano Al2 O3 composite coatings synthesized by electroless plating (2008) J Iron Steel Res Int, 15, pp. 65-69
dc.relation.referencesZhang, S., Han, K., Cheng, L., The effect of SiC particles added in electroless Ni-P plating solution on the properties of composite coatings (2008) Surf Coat Technol, 202, pp. 2807-2812
dc.relation.referencesGalvis, O., Zuleta, A., Torres, H., Obtención y evaluación de recubrimientos Ni-P modificados con magnetitas sintetizadas en presencia de y Ce (2007) Scientia et Technica, 36, pp. 387-391
dc.relation.referencesBalaraju, J.N., Sankara Narayan, T.S.N., Seshadri, S.K., Electroless Ni-P composite coatings (2003) J Appl Electrochem, 33, pp. 807-816
dc.relation.referencesLi, J., Ma, Q., Shao, H., Biosynthesis, characterization, and antibacterial activity of silver nanoparticles produced from rice straw biomass (2017) Bioresources, 12, pp. 4897-4911
dc.relation.referencesSirelkhatim, A., Mahmud, S., Seeni, A., Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism (2015) Nano Lett, 7, pp. 219-242
dc.relation.referencesSlavin, Y.N., Asnis, J., Häfeli, U.O., Bach, H., Metal nanoparticles: understanding the mechanisms behind antibacterial activity (2017) J Nanobiotechnology, 15, pp. 1-20
dc.relation.referencesShao, W., Wu, J., Liu, H., Graphene oxide reinforced Ni-P coatings for bacterial adhesion inhibition (2016) RSC Adv, 6, pp. 46270-46277
dc.relation.referencesSharifalhoseini, Z., Entezari, M.H., Jalal, R., Evaluation of antibacterial activity of anticorrosive electroless Ni-P coating against Escherichia coli and its enhancement by deposition of sono-synthesized ZnO nanoparticles (2015) Surf Coat Technol, 266, pp. 160-166
dc.relation.referencesZhao, Q., Liu, C., Su, X., Antibacterial characteristics of electroless plating Ni – P – TiO 2 coatings (2013) Appl Surf Sci, 274, pp. 101-104
dc.relation.referencesFayyad, E.M., Hassan, M.K., Rasool, K., Surface & Coatings Technology Novel electroless deposited corrosion — resistant and anti-bacterial NiP – TiNi nanocomposite coatings (2019) Surf Coat Technol, 369, pp. 323-333
dc.relation.referencesSharifalhoseini, Z., Entezari, M.H., Enhancement of the corrosion protection of electroless Ni–P coating by deposition of sonosynthesized ZnO nanoparticles (2015) Appl Surf Sci, 351, pp. 1060-1068
dc.relation.referencesMoezzi, A., Cortie, M.B., McDonagh, A.M., Zinc hydroxide sulphate and its transformation to crystalline zinc oxide (2013) Dalton Trans, 42, pp. 14432-14437
dc.relation.referencesSuman, R., Nandan, D., Haleem, A., Experimental study of electroless plating on acrylonitrile butadiene styrene polymer for obtaining new eco-friendly chromium-free processes (2020) Mater Today: Proc, 28, pp. 1575-1579
dc.relation.referencesDizon, J.R.C., Espera, A.H., Chen, Q., Advincula, R.C., Mechanical characterization of 3D-printed polymers (2018) Addit Manuf, 20, pp. 44-67
dc.relation.referencesKrishnamurti, D., The Raman spectra of crystalline sulphates of Ni and Mn (1958) Proc Indian Acad Sci, 48, pp. 355-363
dc.relation.referencesZuleta, A.A., Correa, E., Castaño, J.G., Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy (2017) Surf Coat Technol, 321, pp. 309-320
dc.relation.referencesMomenzadeh, M., Sanjabi, S., The effect of TiO 2 nanoparticle codeposition on microstructure and corrosion resistance of electroless Ni-P coating (2012) Materials and Corrosion, 63, pp. 614-619
dc.relation.referencesKumar, K., Bansal, V., Sharma, S., Microhardness and wear resistance of alkaline electroless Ni-P/Ni-P-ZnO nanocomposite platings (2022) Mater Today Proc
dc.relation.referencesEmami-Karvani, Z., Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria (2012) Afr J Microbiol Res, 5, pp. 1368-1373
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instnameinstname:Universidad de Medellín

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record