Show simple item record

dc.contributor.authorValdés-Tresanco M.E
dc.contributor.authorValdés-Tresanco M.S
dc.contributor.authorMoreno E
dc.contributor.authorValiente P.A.
dc.date.accessioned2023-10-24T19:23:55Z
dc.date.available2023-10-24T19:23:55Z
dc.date.created2023
dc.identifier.issn15206106
dc.identifier.urihttp://hdl.handle.net/11407/7886
dc.description.abstractComputational alanine scanning with the molecular mechanics generalized Born surface area (MM/GBSA) method constitutes a widely used approach for identifying critical residues at protein-protein interfaces. Despite its popularity, the MM/GBSA method still has certain drawbacks due to its dependence on many factors. Here, we performed a systematical study on the impact of four different parameters, namely, the internal dielectric constant, the generalized Born model, the entropic term, and the inclusion of structural waters on the accuracy of computational alanine scanning calculations with the MM/GBSA method. Our results show that the internal dielectric constant is the most critical parameter for getting accurate predictions. The introduction of entropy and interfacial water molecules decreased the quality of the predictions, while the generalized Born model had little to no effect. Considering the significance of the internal dielectric value, we proposed a methodology based on the energetic predominance of a particular set of amino acids at the protein-protein interface for selecting an appropriate value for this variable. We hope that these results serve as a guideline for future studies of protein-protein complexes using the MM/GBSA method. © 2023 American Chemical Society.eng
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85146860147&doi=10.1021%2facs.jpcb.2c07079&partnerID=40&md5=366af1e499ddfa1f7cde5e0f7e629b68
dc.sourceJ Phys Chem B
dc.sourceJournal of Physical Chemistry Beng
dc.titleAssessment of Different Parameters on the Accuracy of Computational Alanine Scanning of Protein-Protein Complexes with the Molecular Mechanics/Generalized Born Surface Area Methodeng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1021/acs.jpcb.2c07079
dc.relation.citationvolume127
dc.relation.citationissue4
dc.relation.citationstartpage944
dc.relation.citationendpage954
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationValdés-Tresanco, M.E., Centre for Molecular Simulations and Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada, Computational Biology and Biomolecular Dynamics Laboratory, Center for Proteins Studies, Faculty of Biology, University of Havana, Havana, Havana, 10400, Cuba
dc.affiliationValdés-Tresanco, M.S., Faculty of Basic Sciences, University of Medellin, Antioquia, Medellin, 50031, Colombia
dc.affiliationMoreno, E., Faculty of Basic Sciences, University of Medellin, Antioquia, Medellin, 50031, Colombia
dc.affiliationValiente, P.A., Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada, Computational Biology and Biomolecular Dynamics Laboratory, Center for Proteins Studies, Faculty of Biology, University of Havana, Havana, Havana, 10400, Cuba
dc.relation.referencesWang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J.Z.H., Hou, T., End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design (2019) Chem. Rev., 119, pp. 9478-9508
dc.relation.referencesMassova, I., Kollman, P.A., Computational Alanine Scanning To Probe Protein-Protein Interactions: A Novel Approach To Evaluate Binding Free Energies (1999) J. Am. Chem. Soc., 121, p. 8133
dc.relation.referencesFeig, M., Onufriev, A., Lee, M.S., Im, W., Case, D.A., Brooks, C.L., Performance Comparison of Generalized Born and Poisson Methods in the Calculation of Electrostatic Solvation Energies for Protein Structures (2004) J. Comput. Chem., 25, p. 265
dc.relation.referencesOnufriev, A., Case, D.A., Bashford, D., Effective Born Radii in the Generalized Born Approximation: The Importance of Being Perfect (2002) J. Comput. Chem., 23, p. 1297
dc.relation.referencesSrinivasan, J., Cheatham, T.E., Cieplak, P., Kollman, P.A., Case, D.A., Continuum Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate-DNA Helices (1998) J. Am. Chem. Soc., 120, pp. 9401-9409
dc.relation.referencesSrinivasan, J., Miller, J., Kollman, P.A., Case, D.A., Continuum Solvent Studies of the Stability of RNA Hairpin Loops and Helices (1998) J. Biomol. Struct. Dyn., 16, p. 671
dc.relation.referencesGenheden, S., Ryde, U., The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities (2015) Expert Opin. Drug Discovery, 10, pp. 449-461
dc.relation.referencesSpacková, N., Cheatham, T.E., 3rd, Ryjácek, F., Lankas, F., Van Meervelt, L., Hobza, P., Sponer, J., Molecular Dynamics Simulations and Thermodynamics Analysis of DNA-Drug Complexes. Minor Groove Binding between 4′,6-Diamidino-2-Phenylindole and DNA Duplexes in Solution (2003) J. Am. Chem. Soc., 125, pp. 1759-1769
dc.relation.referencesGenheden, S., MM/GBSA and LIE Estimates of Host-Guest Affinities: Dependence on Charges and Solvation Model (2011) J. Comput.-Aided Mol. Des., 25, pp. 1085-1093
dc.relation.referencesGohlke, H., Kiel, C., Case, D.A., Insights into Protein-Protein Binding by Binding Free Energy Calculation and Free Energy Decomposition for the Ras-Raf and Ras-Ralgds Complexes (2003) J. Mol. Biol., 330, p. 891
dc.relation.referencesOnufriev, A., Bashford, D., Case, D.A., Modification of the Generalized Born Model Suitable for Macromolecules (2000) J. Phys. Chem. B, 104, p. 3712
dc.relation.referencesOnufriev, A., Bashford, D., Case, D.A., Exploring Protein Native States and Large-Scale Conformational Changes with a Modified Generalized Born Model (2004) Proteins: Struct., Funct., Genet., 55, p. 383
dc.relation.referencesNguyen, H., Roe, D.R., Simmerling, C., Improved Generalized Born Solvent Model Parameters for Protein Simulations (2013) J. Chem. Theory Comput., 9, pp. 2020-2034
dc.relation.referencesHawkins, G.D., Cramer, C.J., Truhlar, D.G., Pairwise Solute Descreening of Solute Charges from a Dielectric Medium (1995) Chem. Phys. Lett., 246, p. 122
dc.relation.referencesTan, C., Tan, Y.H., Luo, R., Implicit Nonpolar Solvent Models (2007) J. Phys. Chem. B, 111, pp. 12263-12274
dc.relation.referencesHou, T., Wang, J., Li, Y., Wang, W., Assessing the Performance of the MM/PBSA and MM/GBSA Methods. 1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics Simulations (2011) J. Chem. Inf. Model., 51, pp. 69-82
dc.relation.referencesGenheden, S., Kuhn, O., Mikulskis, P., Hoffmann, D., Ryde, U., The Normal-Mode Entropy in the MM/GBSA Method: Effect of System Truncation, Buffer Region, and Dielectric Constant (2012) J. Chem. Inf. Model., 52, pp. 2079-2088
dc.relation.referencesDuan, L., Liu, X., Zhang, J.Z., Interaction Entropy: A New Paradigm for Highly Efficient and Reliable Computation of Protein-Ligand Binding Free Energy (2016) J. Am. Chem. Soc., 138, p. 5722
dc.relation.referencesSun, Z., Yan, Y.N., Yang, M., Zhang, J.Z.H., Interaction Entropy for Protein-Protein Binding (2017) J. Chem. Phys., 146, pp. 124124-124124
dc.relation.referencesLiu, X., Peng, L., Zhou, Y., Zhang, Y., Zhang, J.Z., Computational Alanine Scanning with Interaction Entropy for Protein-Ligand Binding Free Energies (2018) J. Chem. Theory Comput., 14, p. 1772
dc.relation.referencesQiu, L., Yan, Y., Sun, Z., Song, J., Zhang, J.Z., Interaction Entropy for Computational Alanine Scanning in Protein-Protein Binding (2018) Wiley Interdiscip. Rev.: Comput. Mol. Sci., 8
dc.relation.referencesMaffucci, I., Contini, A., Explicit Ligand Hydration Shells Improve the Correlation between MM-PB/GBSA Binding Energies and Experimental Activities (2013) J. Chem. Theory Comput., 9, pp. 2706-2717
dc.relation.referencesZhu, Y.-L., Beroza, P., Artis, D.R., Including Explicit Water Molecules as Part of the Protein Structure in MM/PBSA Calculations (2014) J. Chem. Inf. Model., 54, pp. 462-469
dc.relation.referencesMaffucci, I., Contini, A., Improved Computation of Protein-Protein Relative Binding Energies with the Nwat-MMGBSA Method (2016) J. Chem. Inf. Model., 56, pp. 1692-1704
dc.relation.referencesKieke, M.C., Sundberg, E., Shusta, E.V., Mariuzza, R.A., Wittrup, K.D., Kranz, D.M., High Affinity T Cell Receptors from Yeast Display Libraries Block T Cell Activation by Superantigens (2001) J. Mol. Biol., 307, pp. 1305-1315
dc.relation.referencesYu, Y., Wang, Z., Wang, L., Tian, S., Hou, T., Sun, H., Predicting the Mutation Effects of Protein-Ligand Interactions via End-Point Binding Free Energy Calculations: Strategies and Analyses (2022) J. Cheminf., 14, p. 56
dc.relation.referencesLi, Y., Cong, Y., Feng, G., Zhong, S., Zhang, J.Z.H., Sun, H., Duan, L., The Impact of Interior Dielectric Constant and Entropic Change on HIV-1 Complex Binding Free Energy Prediction (2018) Struct. Dyn., 5
dc.relation.referencesMoreira, I.S., Fernandes, P.A., Ramos, M.J., Computational Alanine Scanning Mutagenesis─An Improved Methodological Approach (2007) J. Comput. Chem., 28, pp. 644-654
dc.relation.referencesSimões, I.C.M., Costa, I.P.D., Coimbra, J.T.S., Ramos, M.J., Fernandes, P.A., New Parameters for Higher Accuracy in the Computation of Binding Free Energy Differences upon Alanine Scanning Mutagenesis on Protein-Protein Interfaces (2017) J. Chem. Inf. Model., 57, pp. 60-72
dc.relation.referencesYan, Y., Yang, M., Ji, C.G., Zhang, J.Z.H., Interaction Entropy for Computational Alanine Scanning (2017) J. Chem. Inf. Model., 57, pp. 1112-1122
dc.relation.referencesJankauskaitė, J., Jiménez-García, B., Dapkśnas, J., Fernández-Recio, J., Moal, I.H., SKEMPI 2.0: An Updated Benchmark of Changes in Protein-Protein Binding Energy, Kinetics and Thermodynamics upon Mutation (2019) Bioinformatics, 35, pp. 462-469
dc.relation.referencesAbraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindahl, E., GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers (2015) SoftwareX, 1-2, pp. 19-25
dc.relation.referencesMaier, J.A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K.E., Simmerling, C., Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from Ff99SB (2015) J. Chem. Theory Comput., 11, pp. 3696-3713
dc.relation.referencesUnni, S., Huang, Y., Hanson, R.M., Tobias, M., Krishnan, S., Li, W.W., Nielsen, J.E., Baker, N.A., Web Servers and Services for Electrostatics Calculations with APBS and PDB2PQR (2011) J. Comput. Chem., 32, pp. 1488-1491
dc.relation.referencesJorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of Simple Potential Functions for Simulating Liquid Water (1983) J. Chem. Phys., 79, p. 926
dc.relation.referencesHess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M., LINCS: A Linear Constraint Solver for Molecular Simulations (1997) J. Comput. Chem., 18, p. 1463
dc.relation.referencesMiyamoto, S., Kollman, P.A., Settle: An Analytical Version of the SHAKE and RATTLE Algorithm for Rigid Water Models (1992) J. Comput. Chem., 13, p. 952
dc.relation.referencesBerendsen, H.J.C., Postma, J.P.M., Dinola, A., Haak, J.R., van Gunsteren, W.F., Dinola, A., Haak, J.R., Molecular Dynamics with Coupling to an External Bath (1984) J. Chem. Phys., 81, p. 3684
dc.relation.referencesvan Gunsteren, W.F., Berendsen, H.J.C., A Leap-Frog Algorithm for Stochastic Dynamics (1988) Mol. Simul., 1, p. 173
dc.relation.referencesParrinello, M., Rahman, A., Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method (1981) J. Appl. Phys., 52, p. 7182
dc.relation.referencesEssmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G., A Smooth Particle Mesh Ewald Method (1995) J. Chem. Phys., 103, p. 8577
dc.relation.referencesValdés-Tresanco, M.S., Valdés-Tresanco, M.E., Valiente, P.A., Moreno, E., gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS (2021) J. Chem. Theory Comput., 17, pp. 6281-6291
dc.relation.referencesWeiser, J., Shenkin, P.S., Still, W.C., Approximate Atomic Surfaces from Linear Combinations of Pairwise Overlaps (LCPO) (1999) J. Comput. Chem., 20, pp. 217-230
dc.relation.referencesCase, D.A., Cheatham, T.E., 3rd, Darden, T., Gohlke, H., Luo, R., Merz, K.M.J., Onufriev, A., Woods, R.J., The Amber Biomolecular Simulation Programs (2005) J. Comput. Chem., 26, pp. 1668-1688
dc.relation.referencesWong, S., Amaro, R.E., McCammon, J.A., MM-PBSA Captures Key Role of Intercalating Water Molecules at a Protein-Protein Interface (2009) J. Chem. Theory Comput., 5, pp. 422-429
dc.relation.referencesHu, X., Contini, A., Rescoring Virtual Screening Results with the MM-PBSA Methods: Beware of Internal Dielectric Constants (2019) J. Chem. Inf. Model., 59, pp. 2714-2728
dc.relation.referencesLiu, X., Peng, L., Zhang, J.Z.H., Accurate and Efficient Calculation of Protein-Protein Binding Free Energy-Interaction Entropy with Residue Type-Specific Dielectric Constants (2019) J. Chem. Inf. Model., 59, pp. 272-281
dc.relation.referencesSun, H., Li, Y., Shen, M., Tian, S., Xu, L., Pan, P., Guan, Y., Hou, T., Assessing the Performance of MM/PBSA and MM/GBSA Methods. 5. Improved Docking Performance Using High Solute Dielectric Constant MM/GBSA and MM/PBSA Rescoring (2014) Phys. Chem. Chem. Phys., 16, pp. 22035-22045
dc.relation.referencesRavindranathan, K., Tirado-Rives, J., Jorgensen, W.L., Guimarães, C.R.W., Improving MM-GB/SA Scoring through the Application of the Variable Dielectric Model (2011) J. Chem. Theory Comput., 7, pp. 3859-3865
dc.relation.referencesOnufriev, A.V., Case, D.A., Generalized Born Implicit Solvent Models for Biomolecules (2019) Annu. Rev. Biophys., 48, p. 275
dc.relation.referencesMenzer, W.M., Li, C., Sun, W., Xie, B., Minh, D.D.L., Simple Entropy Terms for End-Point Binding Free Energy Calculations (2018) J. Chem. Theory Comput., 14, pp. 6035-6049
dc.relation.referencesHuang, K., Luo, S., Cong, Y., Zhong, S., Zhang, J.Z.H., Duan, L., An Accurate Free Energy Estimator: Based on MM/PBSA Combined with Interaction Entropy for Protein-Ligand Binding Affinity (2020) Nanoscale, 12, pp. 10737-10750
dc.relation.referencesEkberg, V., Ryde, U., On the Use of Interaction Entropy and Related Methods to Estimate Binding Entropies (2021) J. Chem. Theory Comput., 17, pp. 5379-5391
dc.relation.referencesMenzer, W.M., Xie, B., Minh, D.D.L., On Restraints in End-Point Protein-Ligand Binding Free Energy Calculations (2020) J. Comput. Chem., 41, pp. 573-586
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record