Mostrar el registro sencillo del ítem

dc.contributor.authorSaavedra V
dc.contributor.authorMontoya R
dc.contributor.authorOrfila A
dc.contributor.authorAndrésF O.
dc.date.accessioned2023-10-24T19:23:55Z
dc.date.available2023-10-24T19:23:55Z
dc.date.created2023
dc.identifier.issn983004
dc.identifier.urihttp://hdl.handle.net/11407/7887
dc.description.abstractThis paper presents an innovative methodology to assimilate peak period into wave models at a local scale. The proposed methodology estimates the peak period by processing time stack images from a video monitoring system for assimilation into a wave energy balance spectral model. Assimilation of the wave peak period is performed by correcting the boundary conditions and replacing the directional spectra prescribed by SWAN when using a nesting scheme. This methodology represents a new procedure for assimilating wave peak periods in coastal areas with video system infrastructures. The wave modelling is performed using a three-mesh nesting scheme where the finer domain coincides with the local scale and the proposed assimilation methodology is applied. The results show that the model improves the estimation of the peak period across the whole domain. The shape of the spectrum obtained changes significantly in the inner domain, mainly for low frequencies. © 2023 The Authorseng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85165156162&doi=10.1016%2fj.cageo.2023.105407&partnerID=40&md5=72e9626250c2e76990fb67ec1e0aca8e
dc.sourceComput. Geosci.
dc.sourceComputers and Geoscienceseng
dc.subjectData assimilationeng
dc.subjectPeak periodeng
dc.subjectSWAN modeleng
dc.subjectTime stackseng
dc.subjectWave spectrumeng
dc.subjectWAVEWATCH III modeleng
dc.titleAssimilation of peak period from video images in numerical wave models at a local scaleeng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Civilspa
dc.type.spaArtículo
dc.identifier.doi10.1016/j.cageo.2023.105407
dc.relation.citationvolume178
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationSaavedra, V., Universidad Católica Luis Amigo Medellín, Facultad de ingeniería y Arquitectura, Colombia, Grupo de investigación OCEANICOS, Cra.80 No. 65-223 Bloque M2, Medellín, 050041, Colombia
dc.affiliationMontoya, R., Grupo de Investigación en ingeniería Ingeniería Civil GICI, Grupo de investigación en Calidad del agua y Modelación Hídrica GICAMH, Universidad de Medellín, Carrera 87 N° 30 – 65, Medellín, Colombia
dc.affiliationOrfila, A., Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, 07190, Spain
dc.affiliationAndrésF, O., Grupo de investigación OCEANICOS, Cra.80 No. 65-223 Bloque M2, Medellín, 050041, Colombia, Esporles, Spain Center of Excellence in Marine Science, CEMARIN, Spain
dc.relation.referencesAarninkhof, S.G., Turner, I.L., Dronkers, T.D., Caljouw, M., Nipius, L., A video-based technique for mapping intertidal beach bathymetry (2003) Coast. Eng., 49 (4), pp. 275-289
dc.relation.referencesAhn, S., Haas, K.A., Neary, V.S., Wave energy resource classification system for US coastal waters (2019) Renew. Sustain. Energy Rev., 104, pp. 54-68
dc.relation.referencesAlmar, R., Bonneton, P., Senechal, N., Roelvink, D., Wave celerity from video imaging: a new method (2009) Coast. Eng., 5, pp. 661-673. , 2008: (In
dc.relation.referencesAlmar, R., Coco, G., Bryan, K.R., Huntley, D.A., Short, A.D., Senechal, N., Video observations of beach cusp morphodynamics (2008) Mar. Geol., 254 (3-4), pp. 216-223
dc.relation.referencesAlvarez-Ellacuria, A., Orfila, A., Olabarrieta, M., Medina, R., Vizoso, G., Tintoré, J., A nearshore wave and current operational forecasting system (2010) J. Coast Res., 26 (3), pp. 503-509. , http://www.jstor.org/stable/40605478, Retrieved May 25, 2021, from
dc.relation.referencesAmores, A., Marcos, M., Carrió, D.S., Gómez-Pujol, L., Coastal impacts of storm gloria (january 2020) over the North-western mediterranean (2020) Nat. Hazards Earth Syst. Sci., 20 (7), pp. 1955-1968
dc.relation.referencesAnderson, M.E., Smith, J.M., Wave attenuation by flexible, idealized salt marsh vegetation (2014) Coast. Eng., 83, pp. 82-92
dc.relation.referencesAkpınar, A., van Vledder, G.P., Kömürcü, M.İ., Özger, M., Evaluation of the numerical wave model (SWAN) for wave simulation in the Black Sea (2012) Continent. Shelf Res., 50, pp. 80-99
dc.relation.referencesBattjes, J.A., Janssen, J.P.F.M., Energy loss and set-up due to breaking of random waves (1978) Coast Eng., 1978, pp. 569-587
dc.relation.referencesBitner-Gregersen, E.M., Ewans, K.C., Johnson, M.C., Some uncertainties associated with wind and wave description and their importance for engineering applications (2014) Ocean Eng., 86, pp. 11-25
dc.relation.referencesBooij, N., Ris, R., Holthuijsen, L.H., A third-generation wave model for coastal regions: 1. model description and validation (1999) J. Geophys. Res.: Oceans, 104 (C4), pp. 7649-7666. , (1978-2012)
dc.relation.referencesCavaleri, L., Abdalla, S., Benetazzo, A., Bertotti, L., Bidlot, J.R., Breivik, Ø., Wave modelling in coastal and inner seas (2018) Prog. Oceanogr., 167, pp. 164-233
dc.relation.referencesCavaleri, L., Rizzoli, P.M., Wind wave prediction in shallow water: theory and applications (1981) J. Geophys. Res.: Oceans, 86 (C11), pp. 10961-10973
dc.relation.referencesChin, H., An operational, global scale spectral ocean wave forecasting model (1985) OCEANS’85-Ocean Engineering and the Environment, pp. 110-112. , IEEE
dc.relation.referencesChickadel, C.C., Holman, R.A., Freilich, M.H., (2003), An optical technique for the measurement of longshore currents. J. Geophys. Res.: Oceans, 108(C11)
dc.relation.referencesDavidson, M., Van Koningsveld, M., de Kruif, A., Rawson, J., Holman, R., Lamberti, A., Aarninkhof, S., The CoastView project: Developing video-derived Coastal State Indicators in support of coastal zone management (2007) Coast. Eng., 54 (6-7), pp. 463-475
dc.relation.referencesDee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Vitart, F., The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system (2011) Q. J. R. Meteorol. Soc., 137 (656), pp. 553-597
dc.relation.referencesEldeberky, Y., Battjes, J.A., Parameterization of triad interactions in wave energy models (1995) Proc. Coastal Dynamics Conf., ’95, pp. 140-148. , Gdansk, Poland
dc.relation.referencesEsteva, D.C., Evaluation of preliminary experiments assimilating seasat significant wave heights into a spectral wave model (1988) J. Geophys. Res.: Oceans, 93 (C11), pp. 14099-14105
dc.relation.referencesFedor, L., Brown, G., Waveheight and wind speed measurements from the seasat radar altimeter (1982) J. Geophys. Res.: Oceans, 87 (C5), pp. 3254-3260
dc.relation.referencesFeng, X., Zheng, J., Yan, Y., Wave spectra assimilation in typhoon wave modeling for the East China Sea (2012) Coast. Eng., 69, pp. 29-41
dc.relation.referencesFernández-Mora, A., Criado-Sudau, F.F., Gómez-Pujol, L., Tintoré, J., Orfila, A., Ten years of morphodynamic data at a micro-tidal urban beach: Cala Millor (Western Mediterranean Sea) (2023) Sci. Data, 10 (1), p. 301
dc.relation.referencesGerling, T.W., Partitioning sequences and arrays of directional ocean wave spectra into component wave systems (1992) J. Atmos. Ocean. Technol., 9 (4), pp. 444-458
dc.relation.referencesGómez-Pujol, L., Orfila, A., Álvarez-Ellacuría, A., Terrados, J., Tintoré, J., Posidonia oceanica beach-caster litter in Mediterranean beaches: a coastal videomonitoring study (2013) Journal of Coastal Research, Special Issue, 65, pp. 1768-1773. , D.C. Conley G. Masselink P.E. Russell T.J. O'Hare ISSN 0749-0208
dc.relation.referencesGonçalves, M., Soares, C.G., Local assimilation of wave model predictions for weather routing systems (2022) Ocean Eng., 266
dc.relation.referencesHampson, R.W., Video-based Nearshore Depth Inversion Using WDM Method (2008), University of Delaware
dc.relation.referencesHarris, F.J., On the use of windows for harmonic analysis with the discrete Fourier transform (1978) Proc. IEEE, 66 (1), pp. 51-83
dc.relation.referencesHasselmann, S., Hasselmann, K., Allender, J., Barnett, T.P., Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part II: parameterizations of the nonlinear energy transfer for application in wave models (1985) J. Phys. Oceanogr., 15 (11), pp. 1378-1391
dc.relation.referencesHasselmann, S., Brüning, C., Lionello, P., (1994) Towards a Generalized Optimal Interpolation Method for the Assimilation of ERS-1 SAR Retrieved Wave Spectra in a Wave Model, 361. , EUROPEAN SPACE AGENCY-PUBLICATIONS-ESA SP 21-21
dc.relation.referencesHasselmann, K.F., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Eake, K., Measurements of wind-wave growth and swell decay during the joint North Sea wave project (JONSWAP) (1973) Ergaenzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A
dc.relation.referencesHolman, R.A., Stanley, J., The history and technical capabilities of Argus (2007) Coast Eng., 54 (6-7), pp. 477-491
dc.relation.referencesHolman, R., Stanley, J., cBathy Bathymetry Estimation in the mixed wave-current domain of a tidal estuary (2013) J. Coast. Res., 65. , 10065
dc.relation.referencesHughes, S.A., The TMA shallow-water spectrum description and applications (1984) CERC Tech. Report, p. 39. , CERC-84-7
dc.relation.referencesJiang, H., Wave climate patterns from spatial tracking of global long-term Ocean Wave spectra (2020) J. Clim., 33 (8), pp. 3381-3393
dc.relation.referencesKalnay, E., Atmospheric Modeling, Data Assimilation and Predictability (2002), Cambridge University Press Cambridge
dc.relation.referencesKomen, G.J., Hasselmann, S., Hasselmann, K., On the existence of a fully developed wind-sea spectrum (1984) J. Phys. Oceanogr., 14 (8), pp. 1271-1285
dc.relation.referencesLionello, P., Günther, H., Hansen, B., A sequential assimilation scheme applied to global wave analysis and prediction (1995) J. Mar. Syst., 6 (1-2), pp. 87-107
dc.relation.referencesLuque, P., Gómez-Pujol, L., Marcos, M., Orfila, A., Coastal flooding in the Balearic Islands during the twenty-first century caused by sea-level rise and extreme events (2021) Front. Mar. Sci., 8, p. 676452
dc.relation.referencesLippmann, T.C., Holman, R.A., Quantification of sand bar morphology: A video technique based on wave dissipation (1989) J. Geophys. Res.: Oceans, 94 (C1), pp. 995-1011
dc.relation.referencesMartínez-Asensio, A., Marcos, M., Jordà, G., Gomis, D., Calibration of a new wind-wave hindcast in the Western Mediterranean (2013) J. Mar. Syst., 121-122, pp. 1-10
dc.relation.referencesMorales-Márquez, V., Orfila, A., Simarro, G., Gómez-Pujol, L., Álvarez-Ellacuría, A., Conti, D., Marcos, M., Numerical and remote techniques for operational beach management under storm group forcing (2018) Nat. Hazards Earth Syst. Sci., 18 (12), pp. 3211-3223
dc.relation.referencesNieto, M.A., Garau, B., Balle, S., Simarro, G., Zarruk, G.A., Ortiz, A., An open source, low cost video‐based coastal monitoring system (2010) Earth Surf. Process. Landforms, 35 (14), pp. 1712-1719
dc.relation.referencesOrtega-Sánchez, M., Fachin, S., Sancho, F., (2007), de los Santos, F. J., & Losada, M. A. Synoptic Predictive Morphodynamic Model for Beach Management: Trafalgar (Spain). In Coastal Engineering 2006: (In 5 Volumes) (pp. 3976-3986)
dc.relation.referencesOsorio, A.F., Montoya-Vargas, S., Cartagena, C.A., Espinosa, J., Orfila, A., Winter, C., Virtual BUOY: a video-based approach for measuring near-shore wave peak period (2019) Comput. Geosci., 133
dc.relation.referencesOsorio, A.F., Pérez, J.C., Ortíz, C.A., Medina, R., Técnicas basadas en imágenes de video para cuantificar variables ambientales en zonas costeras (2007) Av. Recur. Hidráulicos, (16)
dc.relation.referencesPallares, E., Sánchez-Arcilla, A., Espino, M., Wave energy balance in wave models (SWAN) for semi-enclosed domains–application to the Catalan coast (2014) Continent. Shelf Res., 87, pp. 41-53
dc.relation.referencesPanteleev, G., Yaremchuk, M., Rogers, W.E., Adjoint-free variational data assimilation into a regional wave model (2015) J. Atmos. Ocean. Technol., 32 (7), pp. 1386-1399
dc.relation.referencesPonce de Leon, S., Guedes Soares, C., The sheltering effect of the Balearic Islands in the hindcast wave field (2010) Ocean Eng., 37, pp. 603-610
dc.relation.referencesPonce de León, S., Orfila, A., Gómez-Pujol, L., Renault, L., Vizoso, G., Tintoré, J., Assessment of wind models around the Balearic Islands for operational wave forecast (2012) Appl. Ocean Res., 34, pp. 1-9
dc.relation.referencesPonce de León, S., Orfila, A., Simarro, G., Wave energy in the Balearic Sea. Evolution from a 29 year spectral wave hindcast (2016) Renew. Energy, 85, pp. 1192-1200
dc.relation.referencesPortilla‐Yandún, J., The global signature of ocean wave spectra (2018) Geophys. Res. Lett., 45 (1), pp. 267-276
dc.relation.referencesRuessink, B.G., Van Enckevort, Kingston, K.S., Davidson, M.A., Analysis of observed two-and three-dimensional nearshore bar behaviour (2000) Mar. Geol., 169 (1-2), pp. 161-183
dc.relation.referencesRusu, L., Guedes Soares, C., Local data assimilation scheme for wave predictions close to the Portuguese ports (2014) J. Operation. Oceanograph., 7 (2), pp. 45-57
dc.relation.referencesRusu, L., Soares, C.G., Impact of assimilating altimeter data on wave predictions in the western Iberian coast (2015) Ocean Model., 96, pp. 126-135
dc.relation.referencesSiddons, L.A., Wyatt, L.R., Wolf, J., Assimilation of HF radar data into the SWAN wave model (2009) J. Mar. Syst., 77 (3), pp. 312-324
dc.relation.referencesShimura, T., Mori, N., High-resolution wave climate hindcast around Japan and its spectral representation (2019) Coast. Eng., 151, pp. 1-9
dc.relation.referencesSimarro, G., Calvete, D., Luque, P., Orfila, A., Ribas, F., UBathy: A new approach for bathymetric inversion from video imagery (2019) Remote Sens., 11 (23), p. 2722
dc.relation.referencesSimarro, G., Ribas, F., Álvarez, A., Guillén, J., Chic, Ò., Orfila, A., ULISES: An open source code for extrinsic calibrations and planview generations in coastal video monitoring systems (2017) J. Coast Res., 33 (5), pp. 1217-1227
dc.relation.referencesSmit, P.B., Houghton, I.A., Jordanova, K., Portwood, T., Shapiro, E., Clark, D., Assimilation of significant wave height from distributed ocean wave sensors (2021) Ocean Model., 159
dc.relation.referencesStockdon, H.F., Holman, R.A., Estimation of wave phase speed and nearshore bathymetry from video imagery (2000) J. Geophys. Res.: Oceans, 105 (C9), pp. 22015-22033
dc.relation.referencesSuzuki, T., Zijlema, M., Burger, B., Meijer, M.C., Narayan, S., Wave dissipation by vegetation with layer schematization in SWAN (2012) Coast. Eng., 59 (1), pp. 64-71
dc.relation.referencesTintoré, J., Medina, R., Gómez-Pujol, L., Orfila, A., Vizoso, G., Integrated and interdisciplinary scientific approach to coastal management (2009) Ocean Coast Manag., 52 (10), pp. 493-505
dc.relation.referencesTintoré, J., Vizoso, G., Casas, B., Heslop, E., Pascual, A., Orfila, A., SOCIB: the Balearic Islands coastal ocean observing and forecasting system responding to science, technology and society needs (2013) Mar. Technol. Soc. J., 47 (1), pp. 101-117
dc.relation.referencesTolman, H.L., User Manual and System Documentation of WAVEWATCH III Version 4.18 (2014), p. 316. , Technical note, MMAB Contribution
dc.relation.referencesTolman, H.L., Chalikov, D., Source terms in a third-generation wind wave model (1996) J. Phys. Oceanogr., 26 (11), pp. 2497-2518
dc.relation.referencesThomas, T.J., Dwarakish, G.S., Numerical wave modelling–A review (2015) Aquatic procedia, 4, pp. 443-448
dc.relation.referencesVoorrips, A.C., Makin, V.K., Hasselmann, S., Assimilation of wave spectra from pitch‐and‐roll buoys in a North Sea wave model (1997) J. Geophys. Res.: Oceans, 102 (C3), pp. 5829-5849
dc.relation.referencesWahle, K., Staneva, J., Guenther, H., Data assimilation of ocean wind waves using neural networks. A case study for the German Bight (2015) Ocean Model., 96, pp. 117-125
dc.relation.referencesWalker, D.T., Assimilation of SAR Imagery in a Nearshore Spectral Wave Model (2006), GENERAL DYNAMICS ADVANCED INFORMATION SYSTEMS DIV ANN ARBOR MI
dc.relation.referencesThe WAM model—a third generation ocean wave prediction model (1988) J. Phys. Oceanogr., 18, pp. 1775-1810
dc.relation.referencesWaters, J., Wyatt, L.R., Wolf, J., Hines, A., Data assimilation of partitioned HF radar wave data into Wavewatch III (2013) Ocean Model., 72, pp. 17-31
dc.relation.referencesWidyantara, I.M.O., Putra, I.M.D.A., Adnyana, I.B.P., COVIMOS: a coastal video monitoring system (2017) J. Electrical, Electronics Inform., 1 (1), pp. 1-6
dc.relation.referencesZamani, A., Azimian, A., Heemink, A., Solomatine, D., Non-linear wave data assimilation with an ann-type wind-wave model and ensemble kalman filter (enkf) (2010) Appl. Math. Model., 34 (8), pp. 1984-1999
dc.relation.referencesZikra, M., Hashimoto, N., Yamashiro, M., Yokota, M., Suzuki, K., Application of video images for monitoring coastal zone in hasaki beach, Japan (2012) Coastal Eng. Proc., 1 (33), p. 43
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem