Mostrar el registro sencillo del ítem

dc.contributor.authorHerrera K
dc.contributor.authorMorales L.F
dc.contributor.authorLópez J.E
dc.contributor.authorMontoya-Ruiz C
dc.contributor.authorMuñoz S
dc.contributor.authorZapata D
dc.contributor.authorSaldarriaga J.F.
dc.date.accessioned2023-10-24T19:23:55Z
dc.date.available2023-10-24T19:23:55Z
dc.date.created2023
dc.identifier.issn21906815
dc.identifier.urihttp://hdl.handle.net/11407/7888
dc.description.abstractThe tanning industry is of major interest for generating water and soil pollution in developing countries. Tannery wastes usually contain hair mixed with inorganic substances, being hazardous and difficult for use, treatment, and valorization. Tanner hair waste is a profitable material to produce biomaterials as biochar for agriculture and environment management. This study explores the potential use of biochar as a bio-adsorbent for emerging compounds like drugs. A fixed-bed pyrolysis activated with KOH was developed to produce the biochar, the KOH activation process increased the surface area and removal yields of the biochar. The study conducted adsorption tests with the single and mixed drugs amoxicillin-AMOX, diclofenac-DFC, azithromycin-AZM, and erythromycin-ERY. All biochar tested reached drug removal rates higher than 80%: AZM with the highest removal rate (94%), AMOX (91%), and DFC (83%). The tannery activated biochar was effective in removing all tested drugs. All the models tested have shown that the adsorption isotherms fit a Langmuir isotherms model. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.eng
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85158150314&doi=10.1007%2fs13399-023-04261-2&partnerID=40&md5=e3865ffb55c3cecf034a58cd23765bb1
dc.sourceBiomass Convers. Biorefinery
dc.sourceBiomass Conversion and Biorefineryeng
dc.subjectAdsorptioneng
dc.subjectBiochareng
dc.subjectCircular economyeng
dc.subjectEmerging compoundseng
dc.subjectTannery wasteeng
dc.titleBiochar production from tannery waste pyrolysis as a circular economy strategy for the removal of emerging compounds in polluted waterseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.type.spaArtículo
dc.identifier.doi10.1007/s13399-023-04261-2
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationHerrera, K., Department of Civil and Environmental Engineering, Universidad de Los Andes, 1Este #19A-40, Bogotá, 111711, Colombia
dc.affiliationMorales, L.F., Department of Civil and Environmental Engineering, Universidad de Los Andes, 1Este #19A-40, Bogotá, 111711, Colombia
dc.affiliationLópez, J.E., Facultad de Arquitectura E Ingeniería, Grupo de Investigación Ambiente, Hábitat Y Sostenibilidad, Línea de Gestión Ambiental, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, Medellín, 050034, Colombia
dc.affiliationMontoya-Ruiz, C., Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín Calle 59A #63-20, Medellín, 050034, Colombia
dc.affiliationMuñoz, S., School of Architecture and Built Environment, Deakin University Geelong Waterfront Campus, Geelong, VIC 3220, Australia
dc.affiliationZapata, D., Faculty of Engineering, Universidad de Medellín, Carrera 87 #30–65, Medellín, 050026, Colombia
dc.affiliationSaldarriaga, J.F., Department of Civil and Environmental Engineering, Universidad de Los Andes, 1Este #19A-40, Bogotá, 111711, Colombia
dc.relation.referencesRamya, K.R., Sathish, M., Madhan, B., Effective utilization of tannery hair waste to develop a high-performing re-tanning agent for cleaner leather manufacturing (2022) J Environ Manage, 302, p. 114029
dc.relation.referencesdos Sampaio DM, R., Estrela, F.N., de Mendes, B.O., Ingestion of tannery effluent as a risk factor to the health of birds: a toxicological study using Coturnix coturnix japonica as a model system (2019) Sci Total Environ, 681, pp. 275-291
dc.relation.referencesWeldetinsae, A., Dawit, M., Getahun, A., Aneugenicity and clastogenicity in freshwater fish Oreochromis niloticus exposed to incipient safe concentration of tannery effluent (2017) Ecotoxicol Environ Saf, 138, pp. 98-104
dc.relation.referencesBorgia, V.J.F., Thatheyus, A.J., Murugesan, A.G., Effects of effluent from electoplating industry on the immune response in the freshwater fish, Cyprinus carpio (2018) Fish Shellfish Immunol, 79, pp. 86-92
dc.relation.referencesMontalvão, M.F., da Silva Castro, A.L., de Lima Rodrigues, A.S., Impacts of tannery effluent on development and morphological characters in a neotropical tadpole (2018) Sci Total Environ, 610-611, pp. 1595-1606
dc.relation.referencesGuimarães, A.T.B., de Oliveira, F.R., de Souza, J.M., Evaluating the reproductive toxicology of tannery effluent in male SWISS mice (2019) Sci Total Environ, 648, pp. 1440-1452
dc.relation.referencesPoole, A.J., Church, J.S., Huson, M.G., Environmentally sustainable fibers from regenerated protein (2009) Biomacromol, 10, pp. 1-8
dc.relation.referencesStaroń, P., Banach, M., Kowalski, Z., Keratin-Origins, properties, application (2011) Chemik, 65, pp. 1019-1026
dc.relation.referencesZoccola, M., Montarsolo, A., Mossotti, R., Green hydrolysis as an emerging technology to turn wool waste into organic nitrogen fertilizer (2015) Waste Biomass Valorization, 6, pp. 891-897
dc.relation.referencesRamamurthy, G., Sehgal, P.K., Krishnan, S., Kumar, M., Use of keratin hydrolysate for better chrome exhaustion (1987) Leather Sci, 34, pp. 224-229
dc.relation.referencesKadirvelu, K., Fathima, N.N., Self-assembly of keratin peptides: its implication on the performance of electrospun PVA nanofibers (2016) Sci Rep, 6, p. 36558
dc.relation.referencesRodríguez, F., Montoya-Ruiz, C., Estiati, I., Saldarriaga, J.F., Removal of drugs in polluted waters with char obtained by pyrolysis of hair waste from the tannery process (2020) ACS Omega, 5, pp. 24389-24402
dc.relation.referencesZafar, I., Rashid, K., Ahmad, M., Ltifi, M., Thermo-chemico-mechanical activation of bagasse ash to develop geopolymer based cold-pressed block (2022) Constr Build Mater, 352, p. 129053
dc.relation.referencesAyati, A., Tanhaei, B., Beiki, H., Insight into the adsorptive removal of ibuprofen using porous carbonaceous materials: a review (2023) Chemosphere, 323, p. 138241
dc.relation.referencesEssandoh, M., Kunwar, B., Pittman, C.U., Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar (2015) Chem Eng J, 265, pp. 219-227
dc.relation.referencesChakraborty, P., Banerjee, S., Kumar, S., Elucidation of ibuprofen uptake capability of raw and steam activated biochar of Aegle marmelos shell: Isotherm, kinetics, thermodynamics and cost estimation (2018) Process Saf Environ Prot, 118, pp. 10-23
dc.relation.referencesDelgado-Moreno, L., Bazhari, S., Gasco, G., New insights into the efficient removal of emerging contaminants by biochars and hydrochars derived from olive oil wastes (2021) Sci Total Environ, 752, p. 141838
dc.relation.referencesOcampo-Perez, R., Padilla-Ortega, E., Medellin-Castillo, N.A., Synthesis of biochar from chili seeds and its application to remove ibuprofen from water. Equilibrium and 3D modeling (2019) Sci Total Environ, 655, pp. 1397-1408
dc.relation.referencesAi, T., Jiang, X., Zhong, Z., Methanol-modified ultra-fine magnetic orange peel powder biochar as an effective adsorbent for removal of ibuprofen and sulfamethoxazole from water (2020) Adsorpt Sci Technol, 38, pp. 304-321. , 10.1177/0263617420944659/ASSET/IMAGES/LARGE/
dc.relation.referencesCabrita, I., Ruiz, B., Mestre, A.S., Removal of an analgesic using activated carbons prepared from urban and industrial residues (2010) Chem Eng J, 163, pp. 249-255
dc.relation.referencesGuedidi, H., Reinert, L., Soneda, Y., Adsorption of ibuprofen from aqueous solution on chemically surface-modified activated carbon cloths (2017) Arab J Chem, 10, pp. S3584-S3594
dc.relation.referencesBaccar, R., Sarrà, M., Bouzid, J., Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product (2012) Chem Eng J, 211-212, pp. 310-317
dc.relation.referencesVeseli, A., Mullallari, F., Balidemaj, F., Electrochemical determination of erythromycin in drinking water resources by surface modified screen-printed carbon electrodes (2019) Microchem J, 148, pp. 412-418
dc.relation.referencesPosada-Perlaza, C.E., Ramírez-Rojas, A., Porras, P., Bogotá River anthropogenic contamination alters microbial communities and promotes spread of antibiotic resistance genes (2019) Sci Rep, 9, pp. 1-13
dc.relation.referencesYang, Y., Song, W., Lin, H., Antibiotics and antibiotic resistance genes in global lakes: a review and meta-analysis (2018) Environ Int, 116, pp. 60-73
dc.relation.referencesThe 2019 WHO AWaRe classification of antibiotics for evaluation and monitoring of use (2019) : Iris., , https://apps.who.int/iris/handle/10665/327957, Accessed 30 Apr 2023
dc.relation.referencesMachado-Alba, J.E., Valladales-Restrepo, L.F., Gaviria-Mendoza, A., Patterns of antibiotic prescription in Colombia: are there differences between capital cities and municipalities? (2020) Antibiotics, 9, pp. 1-14
dc.relation.referencesDouša, M., Hosmanová, R., Rapid determination of amoxicillin in premixes by HPLC (2005) J Pharm Biomed Anal, 37, pp. 373-377
dc.relation.referencesAndreozzi, R., Canterino, M., Marotta, R., Paxeus, N., Antibiotic removal from wastewaters: the ozonation of amoxicillin (2005) J Hazard Mater, 122, pp. 243-250
dc.relation.referencesVieno, N., Sillanpää, M., Fate of diclofenac in municipal wastewater treatment plant - a review (2014) Environ Int, 69, pp. 28-39
dc.relation.referencesMadera-Parra, C.A., Jiménez-Bambague, E.M., Toro-Vélez, A.F., Estudio exploratorio de la presencia de microcontaminantes en el ciclo urbano del agua en Colombia: Caso de estudio Santiago de Cali (2018) Revista Internacional de Contaminacion Ambiental, 34, pp. 475-487
dc.relation.references(2020) Evaluación De La remoción De Azitromicina Disuelta En Agua Residual sintética En Un Reactor UASB a Escala De Laboratorio, , https://repositorio.unal.edu.co/handle/unal/77141, Master Thesis, Universidad Nacional de Colombia
dc.relation.referencesBotero-Coy, A.M., Martínez-Pachón, D., Boix, C., An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater (2018) Sci Total Environ, 642, pp. 842-853
dc.relation.referencesHerrera, K., Morales, L.F., Tarazona, N.A., Use of biochar from rice husk pyrolysis: part a: recovery as an adsorbent in the removal of emerging compounds (2022) ACS Omega, 7, pp. 7625-7637
dc.relation.referencesMorales, L.F., Herrera, K., López, J.E., Saldarriaga, J.F., Use of biochar from rice husk pyrolysis: assessment of reactivity in lime pastes (2021) Heliyon, 7
dc.relation.referencesFurini, L.N., Constantino, C.J.L., Sanchez-Cortes, S., Adsorption of carbendazim pesticide on plasmonic nanoparticles studied by surface-enhanced Raman scattering (2016) J Colloid Interface Sci, 465, pp. 183-189
dc.relation.referencesMahecha-Rivas, J.C., Fuentes-Ordoñez, E., Epelde, E., Saldarriaga, J.F., Aluminum extraction from a metallurgical industry sludge and its application as adsorbent (2021) J Clean Prod, 310, p. 127374
dc.relation.referencesSaldarriaga, J.F., Montoya, N.A., Estiati, I., Unburned material from biomass combustion as low-cost adsorbent for amoxicillin removal from wastewater (2021) J Clean Prod, 284, p. 124732
dc.relation.referencesHan, D., Jiaqiang, E., Deng, Y., A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine (2021) Renew Sustain Energy Rev, 135, p. 110079
dc.relation.referencesHanif, M., Schaaf, P., Kandioller, W., Influence of the arene ligand and the leaving group on the anticancer activity of (thio)maltol ruthenium(ii)–(η6-arene) complexes (2010) Aust J Chem, 63, pp. 1521-1528
dc.relation.referencesRybarczyk, M.K., Peng, H.J., Tang, C., Porous carbon derived from rice husks as sustainable bioresources: insights into the role of micro-/mesoporous hierarchy in hosting active species for lithium-sulphur batteries (2016) Green Chem, 18, pp. 5169-5179
dc.relation.referencesCarballa, M., Omil, F., Lema, J.M., Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant (2004) Water Res, 38, pp. 2918-2926
dc.relation.referencesRossi, D., Cappello, M., Antognoli, M., Pyrolyzed tannery sludge as adsorbent of volatile organic compounds from tannery air emissions (2023) Chem Eng J, 454, p. 140320
dc.relation.referencesSong, J., Li, Y., Wang, Y., Preparing biochars from cow hair waste produced in a tannery for dye wastewater treatment (2021) Materials, 14, p. 1690
dc.relation.referencesBenjedim, S., Romero-Cano, L.A., Pérez-Cadenas, A.F., Removal of emerging pollutants present in water using an E-coli biofilm supported onto activated carbons prepared from argan wastes: Adsorption studies in batch and fixed bed (2020) Sci Total Environ, 720. , (,),., https://doi.org/10.1016/j.scitotenv.2020.137491
dc.relation.referencesHou, L., Han, X., Wang, N., High performance of molecularly imprinted polymer for the selective adsorption of erythromycin in water (2020) Colloid Polym Sci, 298, pp. 1023-1033
dc.relation.referencesPiccin, J.S., Cadaval, T.R.S.A., de Pinto, L.A.A., Dotto, G.L., Adsorption isotherms in liquid phase: Experimental, modeling, and interpretations (2017) Adsorption Processes for Water Treatment and Purification, pp. 19-51. , https://doi.org/10.1007/978-3-319-58136-1_2/FIGURES/7
dc.relation.referencesLópez, J.E., Builes, S., Heredia Salgado, M.A., Adsorption of cadmium using biochars produced from agro-residues (2020) J Phys Chem C, 124, pp. 14592-14602
dc.relation.referencesJiang, W., Pelaez, M., Dionysiou, D.D., Chromium(VI) removal by maghemite nanoparticles (2013) Chem Eng J, 222, pp. 527-533
dc.relation.referencesGholamiyan, S., Hamzehloo, M., Farrokhnia, A., RSM optimized adsorptive removal of erythromycin using magnetic activated carbon: Adsorption isotherm, kinetic modeling and thermodynamic studies (2020) Sustain Chem Pharm, 17. , https://doi.org/10.1016/j.scp.2020.100309
dc.relation.referencesDavoodi, S., Dahrazma, B., Goudarzi, N., Gorji, H.G., Adsorptive removal of azithromycin from aqueous solutions using raw and saponin-modified nano diatomite (2019) Water Sci Technol, 80, pp. 939-949
dc.relation.referencesSaadi, Z., Fazaeli, R., Vafajoo, L., Promotion of clinoptilolite adsorption for azithromycin antibiotic by Tween 80 and Triton X-100 surface modifiers under batch and fixed-bed processes (2021) Chem Eng Commun, 208, pp. 328-348
dc.relation.referencesBhadra, B.N., Seo, P.W., Jhung, S.H., Adsorption of diclofenac sodium from water using oxidized activated carbon (2016) Chem Eng J, 301, pp. 27-34
dc.relation.referencesOh, S.Y., Il, Y.D., Shin, Y., Seo, G., FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide (2005) Carbohydr Res, 340, pp. 417-428
dc.relation.referencesSong, J., Li, Y., Wang, Y., Preparing biochars from cow hair waste produced in a tannery for dye wastewater treatment (2021) Materials, 14. , https://doi.org/10.3390/ma14071690
dc.relation.referencesZhang, Y., Ma, Z., Zhang, Q., Comparison of the physicochemical characteristics of bio-char pyrolyzed from moso bamboo and rice husk with different pyrolysis temperatures (2017) Bioresources, 12, pp. 4652-4669
dc.relation.referencesLi, N., Zhou, L., Jin, X., Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework (2019) J Hazard Mater, 366, pp. 563-572
dc.relation.referencesBadawy, M.I., El-Gohary, F.A., Abdel-Wahed, M.S., (2023) Mass flow and consumption calculations of pharmaceuticals in sewage treatment plant with emphasis on the fate and risk quotient assessment (2023) Sci Rep, 13, pp. 3500-3510
dc.relation.referencesZeng, X., Liu, J., Zhao J (2023) Wet oxidation and catalytic wet oxidation of pharmaceutical sludge (2023) Sci Rep, 13, pp. 2544-2551
dc.relation.referencesDubey, M., Vellanki, B.P., Kazmi, A.A., Fate of emerging contaminants in a sequencing batch reactor and potential of biological activated carbon as tertiary treatment for the removal of persisting contaminants (2023) J Environ Manage, 338, p. 117802
dc.relation.referencesDang, Q., Wang, L., Liu, J., Recent progress of photoelectrocatalysis systems for wastewater treatment (2023) J Water Process Eng, 53, p. 103609
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem