Mostrar el registro sencillo del ítem

dc.contributor.authorBuelvas J
dc.contributor.authorMúnera D
dc.contributor.authorTobón V D.P
dc.contributor.authorAguirre J
dc.contributor.authorGaviria N.
dc.date.accessioned2023-10-24T19:24:00Z
dc.date.available2023-10-24T19:24:00Z
dc.date.created2023
dc.identifier.issn496979
dc.identifier.urihttp://hdl.handle.net/11407/7901
dc.description.abstractWith the development of new technologies, particularly Internet of Things (IoT), there has been an increase in the deployment of low-cost air quality monitoring systems. Compared to traditional robust monitoring stations, these systems provide real-time information with higher spatio-temporal resolution. These systems use inexpensive and low-cost sensors, with lower accuracy as compared to robust systems. This fact has raised some concern regarding the quality of the data gathered by the IoT systems, which may compromise the performance of the environmental models. Considering the relevance of the data quality in this scenario, this paper presents a study of the data quality associated with IoT-based air quality monitoring systems. Following a systematic mapping method, and based on existing guidelines to assess data quality in these systems, we have identified the main Data Quality (DQ) dimensions and the corresponding DQ enhancement techniques. After analyzing more than 70 papers, we found that the most common DQ dimensions targeted by the different works are accuracy and precision, which are enhanced by the use of different calibration techniques. Based on our findings, we present a discussion on the challenges that must be addressed in order to improve data quality in IoT-based air quality monitoring systems. © 2023, The Author(s).eng
dc.language.isoeng
dc.publisherInstitute for Ionics
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85152553772&doi=10.1007%2fs11270-023-06127-9&partnerID=40&md5=2745669834adc2ebf004d1b590024d8f
dc.sourceWater Air Soil Pollut.
dc.sourceWater, Air, and Soil Pollutioneng
dc.subjectAir qualityeng
dc.subjectData qualityeng
dc.subjectData quality enhancing techniqueseng
dc.subjectData quality indicatorseng
dc.subjectInternet of Thingseng
dc.subjectLow-cost sensorseng
dc.titleData Quality in IoT-Based Air Quality Monitoring Systems: a Systematic Mapping Studyeng
dc.typeReview
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Telecomunicacionesspa
dc.type.spaRevisión
dc.identifier.doi10.1007/s11270-023-06127-9
dc.relation.citationvolume234
dc.relation.citationissue4
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationBuelvas, J., Faculty of Engineering, Universidad de Antioquia, Cl. 67 #53-108, Medellín, Colombia
dc.affiliationMúnera, D., Faculty of Engineering, Universidad de Antioquia, Cl. 67 #53-108, Medellín, Colombia
dc.affiliationTobón V, D.P., Faculty of Engineering, Universidad de Medellín, Cra. 87 #30-65, Medellín, Colombia
dc.affiliationAguirre, J., Faculty of Engineering, Universidad de Medellín, Cra. 87 #30-65, Medellín, Colombia
dc.affiliationGaviria, N., Faculty of Engineering, Universidad de Antioquia, Cl. 67 #53-108, Medellín, Colombia
dc.relation.referencesAlavi-Shoshtari, M., Williams, D., Salmond, J., Detection of malfunctions in sensor networks (2013) Environmetrics, 24 (4), pp. 227-236
dc.relation.referencesAlavi-Shoshtari, M., Salmond, J., Giurcăneanu, C., Automated data scanning for dense networks of low-cost air quality instruments: Detection and differentiation of instrumental error and local to regional scale environmental abnormalities (2018) Environmental Modelling and Software, 101, pp. 34-50
dc.relation.referencesAlvarado, M., Gonzalez, F., Fletcher, A., Towards the development of a low cost airborne sensing system to monitor dust particles after blasting at open-pit mine sites (2015) Sensors (Switzerland), 15 (8), pp. 19,667-19,687
dc.relation.referencesAtzori, L., Iera, A., Morabito, G., Understanding the Internet of Things: Definition, potentials, and societal role of a fast evolving paradigm (2017) Ad Hoc Networks, 56, pp. 122-140
dc.relation.references(2018) Calibrating low-cost air quality sensors using multiple arrays of sensors. pp, pp. 1-6. , https://doi.org/10.1109/WCNC.2018.8377051
dc.relation.referencesBart, M., Williams, D., Ainslie, B., High density ozone monitoring using gas sensitive semi-conductor sensors in the lower fraser valley, British Columbia (2014) Environmental Science and Technology, 48 (7), pp. 3970-3977
dc.relation.references). Methodologies for data quality assessment and improvement (2009) ACM Computing Surveys, 41 (3). , https://doi.org/10.1145/1541880.1541883
dc.relation.references(2006) Data quality: Concepts, methodologies and techniques., , https://doi.org/10.1007/978-1-4020-4749-5_4
dc.relation.referencesBenabbas, A., Geißelbrecht, M., Martin Nikol, G., Measure particulate matter by yourself: Data-quality monitoring in a citizen science project (2019) Journal of Sensors and Sensor Systems, 8 (2), pp. 317-328
dc.relation.referencesChallenges in capturing and analyzing high resolution urban air quality data (2018) In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, Ubicomp ’, 18, pp. 1162-1165. , https://doi.org/10.1145/3267305.3274762, New York: Association for Computing Machinery
dc.relation.referencesData quality estimation in a smart city’s air quality monitoring IoT application (2021) In 2021 2Nd Sustainable Cities Latin America Conference, SCLA, 2021. , https://doi.org/10.1109/SCLA53004.2021.9540154
dc.relation.references(2020) Wireless sensor network calibration for PM10 measurement., , https://doi.org/10.1109/CIVEMSA48639.2020.9132973
dc.relation.referencesCastell, N., Dauge, F., Schneider, P., Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? (2017) Environment International, 99, pp. 293-302
dc.relation.referencesTowards evidence-based understanding of electronic data sources (2010) In EASE’10 Proceedings of the 14Th International Conference on Evaluation and Assessment in Software Engineering, pp. 135-138. , Swindon
dc.relation.referencesChen, L.J., Ho, Y.H., Hsieh, H.H., ADF: An anomaly detection framework for large-scale PM2.5 sensing systems (2018) IEEE Internet of Things Journal, 5 (2), pp. 559-570
dc.relation.referencesChu, H.J., Ali, M.Z., He, Y.C., Spatial calibration and PM2.5 mapping of low-cost air quality sensors (2020) Scientific Reports, 10 (1). , &, (,).,., (,)., https://doi.org/10.1038/s41598-020-79064-w
dc.relation.referencesChung, J.J., Kim, H.J., An automobile environment detection system based on deep neural network and its implementation using IoT-enabled in-vehicle air quality sensors (2020) Sustainability (Switzerland), 12 (6). , https://doi.org/10.3390/su12062475
dc.relation.referencesConnolly, R.E., Yu, Q., Wang, Z., Long-term evaluation of a low-cost air sensor network for monitoring indoor and outdoor air quality at the community scale (2022) Science of The Total Environment, 807, p. 150,797
dc.relation.referencesCui, H., Zhang, L., Li, W., A new calibration system for low-cost sensor network in air pollution monitoring (2021) Atmospheric Pollution Research, 12 (5), p. 101,049
dc.relation.referencesDe Vito, S., Massera, E., Piga, M., On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario (2008) Sensors and Actuators B: Chemical, 129 (2), pp. 750-757
dc.relation.referencesPerformance evaluation and community application of low-cost sensors for ozone and nitrogen dioxide (2016) Sensors, 16 (10). , https://doi.org/10.3390/s16101698, (Switzerland)
dc.relation.references(2017) EPA, UEPA, 2
dc.relation.referencesFang, X., Bate, I., (2017) Issues of using wireless sensor network to monitor urban air quality, pp. 32-39. , https://doi.org/10.1145/3143337.3143339
dc.relation.referencesFang, X., Bate, I., Using multi-parameters for calibration of low-cost sensors in urban environment (2017) Proceedings of the 2017 International Conference on Embedded Wireless Systems and Networks, 17, pp. 1-11. , https://doi.org/10.5555/3108009.3108011, USA: Junction Publishing
dc.relation.referencesFeinberg, S., Williams, R., Hagler, G., Examining spatiotemporal variability of urban particulate matter and application of high-time resolution data from a network of low-cost air pollution sensors (2019) Atmospheric Environment, 213, pp. 579-584
dc.relation.referencesFu, K., Ren, W., Dong, W., (2017) Multihop calibration for mobile sensing: K-hop calibratability and reference sensor deployment, , https://doi.org/10.1109/INFOCOM.2017.8056962
dc.relation.referencesGuo, J., Liu, F., Automatic data quality control of observations in wireless sensor network (2015) IEEE Geoscience and Remote Sensing Letters, 12 (4), pp. 716-720
dc.relation.referencesHao, F., Jiao, M., Min, G., Launching an efficient participatory sensing campaign: A smart mobile device-based approach (2015) ACM Transactions on Multimedia Computing, Communications and Applications, p. 12. , https://doi.org/10.1145/2808198
dc.relation.referencesHarkat, M.F., Mourot, G., Ragot, J., An improved PCA scheme for sensor FDI: Application to an air quality monitoring network (2006) Journal of Process Control, 16 (6), pp. 625-634
dc.relation.references(2018) Reliable Detection of Abnormal Ozone Measurements Using an Air Quality Sensors Network, pp. 1-5. , https://doi.org/10.1109/EE1.2018.8385265
dc.relation.referencesHasenfratz, D., Saukh, O., Thiele, L., On-the-fly calibration of low-cost gas sensors (2012) Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7158, pp. 228-244. , https://doi.org/10.1007/978-3-642-28169-3_15
dc.relation.referencesHeimann, I., Bright, V., McLeod, M., Source attribution of air pollution by spatial scale separation using high spatial density networks of low cost air quality sensors (2015) Atmospheric Environment, 113, pp. 10-19
dc.relation.referencesMapping air quality in IoT cities: Cloud calibration and air quality inference of sensor data (2020) In Proceedings of IEEE Sensors., , https://doi.org/10.1109/SENSORS47125.2020.9278941
dc.relation.referencesHofman, J., Nikolaou, M., Shantharam, S.P., Distant calibration of low-cost PM and NO2 sensors
dc.relation.referencesEvidence from multiple sensor testbeds (2022) Atmospheric Pollution Research, 13 (1), p. 101,246
dc.relation.referencesHuang, J.W., Zhong, M.X., Jaysawal, B., Tadilof: Time aware density-based incremental local outlier detection in data streams (2020) Sensors (Switzerland), 20 (20), pp. 1-25. , https://doi.org/10.3390/s20205829
dc.relation.referencesHuang, J.W., Zhong, M.X., Jaysawal, B.P., Tadilof: Time aware density-based incremental local outlier detection in data streams (2020) Sensors, 20 (20), p. 5829. , &, (, b
dc.relation.references(2019) ISO/IEC 25012, , https://iso25000.com/index.php/en/iso-25000-standards/iso-25012?start=0
dc.relation.referencesJain, R., Shah, H., (2017) An anomaly detection in smart cities modeled as wireless sensor network, , https://doi.org/10.1109/ICONSIP.2016.7857445
dc.relation.referencesJames, K.L., Randall, N.P., Haddaway, N.R., A methodology for systematic mapping in environmental sciences (2016) Environmental Evidence, 5 (1), p. 7
dc.relation.referencesEvaluation of measurement data — Guide to the expression of uncertainty in measurement (2008) International Organization for Standardization Geneva ISBN, 50, p. 134
dc.relation.referencesJiao, W., Hagler, G., Williams, R., Community air sensor network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the Southeastern United States (2016) Atmospheric Measurement Techniques, 9 (11), pp. 5281-5292
dc.relation.referencesKaivonen, S., Ngai, E.H., Real-time air pollution monitoring with sensors on city bus (2020) Digital Communications and Networks, 6 (1), pp. 23-30
dc.relation.referencesKarkouch, A., Mousannif, H., Al Moatassime, H., Data quality in internet of things: A state-of-the-art survey (2016) Journal of Network and Computer Applications, 73, pp. 57-81
dc.relation.referencesKelly, K., Whitaker, J., Petty, A., Ambient and laboratory evaluation of a low-cost particulate matter sensor (2017) Environmental Pollution, 221, pp. 491-500
dc.relation.referencesKendrick, C., Wilde, D., Martin, K., (2019) Developing best practices for air quality sensor deployments through testing, , https://doi.org/10.1145/3357492.3358626
dc.relation.referencesKim, J., Shusterman, A., Lieschke, K., The Berkeley atmospheric CO2 observation network: Field calibration and evaluation of low-cost air quality sensors (2018) Atmospheric Measurement Techniques, 11 (4), pp. 1937-1946
dc.relation.referencesKizel, F., Etzion, Y., Shafran-Nathan, R., Node-to-node field calibration of wireless distributed air pollution sensor network (2018) Environmental Pollution, 233, pp. 900-909
dc.relation.referencesKlein, A., Lehner, W., Representing data quality in sensor data streaming environments (2009) Journal of Data and Information Quality, 1 (2). , &, (,).,., (,)., https://doi.org/10.1145/1577840.1577845
dc.relation.referencesKotsev, A., Schade, S., Craglia, M., (2016) Next generation air quality platform: Openness and interoperability for the Internet of Things. Sensors (Switzerland, 16 (3). , https://doi.org/10.3390/s16030403
dc.relation.referencesKuemper, D., Iggena, T., Toenjes, R., (2018) Valid.IoT - A framework for sensor data quality analysis and interpolation, pp. 294-303. , https://doi.org/10.1145/3204949.3204972
dc.relation.referencesKumar, P., Morawska, L., Martani, C., The rise of low-cost sensing for managing air pollution in cities (2015) Environment International, 75, pp. 199-205
dc.relation.referencesLee, C.H., Wang, Y.B., Yu, H.L., An efficient spatiotemporal data calibration approach for the low-cost PM2.5 sensing network: A case study in Taiwan (2019) Environment International, 130, p. 104,838
dc.relation.referencesLi, F., Nastic, S., Dustdar, S., Data quality observation in pervasive environments (2012) Proceedings - 15Th IEEE International Conference on Computational Science and Engineering, CSE 2012 and 10Th IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, EUC, 2012, pp. 602-609. , https://doi.org/10.1109/ICCSE.2012.88
dc.relation.referencesLi, J., Li, H., Ma, Y., Spatiotemporal distribution of indoor particulate matter concentration with a low-cost sensor network (2018) Building and Environment, 127, pp. 138-147
dc.relation.referencesLi, Y., Yuan, Z., Chen, L.W.A., From air quality sensors to sensor networks: Things we need to learn (2022) Sensors and Actuators B: Chemical, 351, p. 130,958
dc.relation.referencesLin, T.H., Zhang, X.R., Chen, C.P., Learning to identify malfunctioning sensors in a large-scale sensor network (2022) IEEE Sensors Journal, 22 (3), pp. 2582-2590
dc.relation.referencesLin, Y., Dong, W., Chen, Y., Calibrating low-cost sensors by a two-phase learning approach for urban air quality measurement (2018) Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2 (1). , &, (,).,., (,)., https://doi.org/10.1145/3191750
dc.relation.referencesLin, Y.C., Chi, W.J., Lin, Y.Q., The improvement of spatial-temporal resolution of PM2.5 estimation based on micro-air quality sensors by using data fusion technique (2020) Environment International, 134. , &, (, a,).,., https://doi.org/10.1016/j.envint.2019.105305
dc.relation.referencesLin, Y.C., Chi, W.J., Lin, Y.Q., The improvement of spatial-temporal resolution of PM2.5 estimation based on micro-air quality sensors by using data fusion technique (2020) Environment International, 134 (105), p. 305. , https://doi.org/10.1016/j.envint.2019.105305, (b)
dc.relation.references(2019) Data Quality and the Internet of Things. Computing, , https://doi.org/10.1007/s00607-019-00746-z
dc.relation.referencesLiu, D., Zhang, Q., Jiang, J., Performance calibration of low-cost and portable particular matter (PM) sensors (2017) Journal of Aerosol Science, 112, pp. 1-10
dc.relation.referencesREMIAN: Real-time and error-tolerant missing value imputation (2020) ACM Transactions on Knowledge Discovery from Data, 14 (6). , https://doi.org/10.1145/3412364
dc.relation.referencesSCAN: Multi-hop calibration for mobile sensor arrays (2017) Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1 (2). , https://doi.org/10.1145/3090084
dc.relation.referencesManikonda, A., Zíková, N., Hopke, P.K., Laboratory assessment of low-cost PM monitors (2016) Journal of Aerosol Science, 102, pp. 29-40
dc.relation.referencesCurrentSense: A novel approach for fault and drift detection in environmental IoT sensors (2021) In Iotdi 2021 - Proceedings of the 2021 International Conference on Internet-Of-Things Design and Implementation, pp. 93-105. , https://doi.org/10.1145/3450268.3453535
dc.relation.references(2016) Private rendezvous-based calibration of low-cost sensors for participatory environmental sensing, pp. 82-85. , https://doi.org/10.1145/2962735.2962754
dc.relation.referencesMead, M., Popoola, O., Stewart, G., The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks (2013) Atmospheric Environment, 70, pp. 186-203
dc.relation.referencesMoltchanov, S., Levy, I., Etzion, Y., On the feasibility of measuring urban air pollution by wireless distributed sensor networks (2015) Science of the Total Environment, 502, pp. 537-547
dc.relation.referencesMueller, M., Meyer, J., Hueglin, C., Design of an ozone and nitrogen dioxide sensor unit and its long-term operation within a sensor network in the city of Zurich (2017) Atmospheric Measurement Techniques, 10 (10), pp. 3783-3799
dc.relation.referencesMúnera, D., Tobon, D.P., Aguirre, J., IoT-based air quality monitoring systems for smart cities: A systematic mapping study (2021) International Journal of Electrical and Computer Engineering (IJECE), 11 (4), pp. 3470-3482
dc.relation.references(2019) Air Pollution Monitoring Network Using Low-Cost Sensors, a Case Study in Hanoi, , https://doi.org/10.1088/1755-1315/266/1/012017, Vietnam
dc.relation.referencesOkafor, N., Alghorani, Y., Delaney, D., Improving data quality of low-cost IoT sensors in environmental monitoring networks using data fusion and machine learning approach (2020) ICT Express, 6 (3), pp. 220-228
dc.relation.referencesOrlowski, C., Cofta, P., Wasik, M., The use of group decision-making to improve the monitoring of air quality (2019) Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11890 LNCS, pp. 127-145. , https://doi.org/
dc.relation.referencesOuzzani, M., Hammady, H., Fedorowicz, Z., Rayyan-a web and mobile app for systematic reviews (2016) Systematic Reviews, 5 (1), pp. 1-10
dc.relation.referencesPenza, M., Chapter 12 - Low-cost sensors for outdoor air quality monitoring (2020) Advanced Nanomaterials for Inexpensive Gas Microsensors. Micro and Nano Technologies, pp. 235-288. , https://doi.org/10.1016/B978-0-12-814827-3.00012-8, E. Llobet, Elsevier
dc.relation.references(2008) Systematic Mapping Studies in Software Engineering., , https://doi.org/10.14236/ewic/ease2008.8
dc.relation.referencesPetersen, K., Vakkalanka, S., Kuzniarz, L., Guidelines for conducting systematic mapping studies in software engineering: An update (2015) Information and Software Technology, 64, pp. 1-18
dc.relation.referencesPiedrahita, R., Xiang, Y., Masson, N., The next generation of low-cost personal air quality sensors for quantitative exposure monitoring (2014) Atmospheric Measurement Techniques, 7 (10), pp. 3325-3336
dc.relation.references(2020) Medellín cómo Vamos, , https://www.medellincomovamos.org/node/18687
dc.relation.referencesQiao, X., Zhang, Q., Wang, D., Improving data reliability: A quality control practice for low-cost PM2.5 sensor network (2021) Science of The Total Environment, 779, p. 146,381
dc.relation.referencesQin, X., Hou, L., Gao, J., The evaluation and optimization of calibration methods for low-cost particulate matter sensors: Inter-comparison between fixed and mobile methods (2020) Science of the Total Environment, p. 715. , https://doi.org/10.1016/j.scitotenv.2020.136791
dc.relation.referencesRai, A., Kumar, P., Pilla, F., End-user perspective of low-cost sensors for outdoor air pollution monitoring (2017) Science of the Total Environment, 607-608, pp. 691-705
dc.relation.referencesRajasegarar, S., Havens, T., Karunasekera, S., High-resolution monitoring of atmospheric pollutants using a system of low-cost sensors (2014) IEEE Transactions on Geoscience and Remote Sensing, 52 (7), pp. 3823-3832. , https://doi.org/10.1109/TGRS.2013.2276431
dc.relation.referencesRajasegarar, S., Zhang, P., Zhou, Y., (2014) High resolution spatio-temporal monitoring of air pollutants using wireless sensor networks, , https://doi.org/10.1109/ISSNIP.2014.6827607
dc.relation.referencesRezapour, A., Tzeng, W.G., RL-PMAgg: Robust aggregation for PM2.5 using deep RL-based trust management system (2021) Internet of Things, 13, p. 100,347
dc.relation.referencesRivera-Munoz, L.M., Gallego-Villada, J.D., Giraldo-Forero, A.F., Missing data estimation in a low-cost sensor network for measuring air quality: A case study in Aburra Valley (2021) Water Air and Soil Pollution, 232 (10). , https://doi.org/10.1007/s11270-021-05363-1
dc.relation.referencesRollo, F., Po, L., SenseBoard: Sensor monitoring for air quality experts (2021) CEUR Workshop Proceedings.
dc.relation.referencesRöösli, M., Braun-Fahrländer, C., Künzli, N., Spatial variability of different fractions of particulate matter within an urban environment and between urban and rural sites (2000) Journal of the Air and Waste Management Association, 50 (7), pp. 1115-1124
dc.relation.referencesSaukh, O., Hasenfratz, D., Thiele, L., (2015) Reducing multi-hop calibration errors in large-scale mobile sensor networks, pp. 274-285. , https://doi.org/10.1145/2737095.2737113
dc.relation.referencesSicari, S., Cappiello, C., De Pellegrini, F., A security-and quality-aware system architecture for Internet of Things (2016) Information Systems Frontiers, 18 (4), pp. 665-677
dc.relation.referencesSicari, S., Rizzardi, A., Cappiello, C., Toward data governance in the Internet of Things (2018) Studies in Computational Intelligence, 715, pp. 59-74
dc.relation.referencesSun, L., Wong, K., Wei, P., Development and application of a next generation air sensor network for the Hong Kong marathon 2015 air quality monitoring (2016) Sensors (Switzerland, 16 (2). , https://doi.org/10.3390/s16020211
dc.relation.referencesTalampas, M., Low, K.S., (2012) Maximum likelihood estimation of ground truth for air quality monitoring using vehicular sensor networks, , https://doi.org/10.1109/TENCON.2012.6412308
dc.relation.referencesTang, M., (2016) Geospatial multimedia data for situation recognition, pp. 1430-1434. , https://doi.org/10.1145/2964284.2971472
dc.relation.referencesUnion, E., Directive 2008/50/EC of the European parliament and of the council of 21 May 2008 on ambient air quality and cleaner air for Europe (2008) Official Journal of the European Union
dc.relation.referencesvan Zoest, V., Liu, X.E., (2021) Data Quality Evaluation, Outlier Detection and Missing Data Imputation Methods for Iot in Smart Cities, , https://doi.org/10.1007/978-3-030-72065-0=_1
dc.relation.referencesWang, L., Zhang, D., Pathak, A., (2015) CCS-TA: Quality-guaranteed online task allocation in compressive crowdsensing, pp. 683-694. , https://doi.org/10.1145/2750858.2807513
dc.relation.referencesWang, L., Zhang, D., Yang, D., SPACE-TA: Cost-effective task allocation exploiting intradata and interdata correlations in sparse crowdsensing (2017) ACM Transactions on Intelligent Systems and Technology, 9 (2). , https://doi.org/10.1145/3131671
dc.relation.referencesWang, R., Beyond accuracy: What data quality means to data consumers (1996) Journal of Management Information Systems, 12 (4), pp. 5-34
dc.relation.referencesWang, W.C., Lung, S.C., Liu, C., Laboratory evaluations of correction equations with multiple choices for seed low-cost particle sensing devices in sensor networks (2020) Sensors (Switzerland), 20 (13), pp. 1-25
dc.relation.referencesWeissert, L., Salmond, J., Miskell, G., Use of a dense monitoring network of low-cost instruments to observe local changes in the diurnal ozone cycles as marine air passes over a geographically isolated urban centre (2017) Science of the Total Environment, 575, pp. 67-78
dc.relation.referencesWhite, F.E., Data fusion Lexicon (1991) Tech. Rep., Joint Directors of Labs Washington DC.
dc.relation.references(2017) World Health Organization Regional Office for Europe, , WHO, Copenhagen
dc.relation.references(2019) Active Sparse Mobile Crowd Sensing Based on Matrix Completion., pp. 195-210. , https://doi.org/10.1145/3299869.3319856
dc.relation.references(2016) An Adaptive and Compressive Data Gathering Scheme in Vehicular Sensor Networks., pp. 207-215. , https://doi.org/10.1109/ICPADS.2015.34
dc.relation.referencesvan Zoest, V., Osei, F., Stein, A., Calibration of low-cost NO2 sensors in an urban air quality network (2019) Atmospheric Environment, 210, pp. 66-75
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem