dc.contributor.author | Contreras M.A | |
dc.contributor.author | Serrano-Rivero Y | |
dc.contributor.author | González-Pose A | |
dc.contributor.author | Salazar-Uribe J | |
dc.contributor.author | Rubio-Carrasquilla M | |
dc.contributor.author | Soares-Alves M | |
dc.contributor.author | Parra N.C | |
dc.contributor.author | Camacho-Casanova F | |
dc.contributor.author | Sánchez-Ramos O | |
dc.contributor.author | Moreno E. | |
dc.date.accessioned | 2023-10-24T19:24:00Z | |
dc.date.available | 2023-10-24T19:24:00Z | |
dc.date.created | 2023 | |
dc.identifier.issn | 14203049 | |
dc.identifier.uri | http://hdl.handle.net/11407/7902 | |
dc.description.abstract | Nanobodies (Nbs) are single domain antibody fragments derived from heavy-chain antibodies found in members of the Camelidae family. They have become a relevant class of biomolecules for many different applications because of several important advantages such as their small size, high solubility and stability, and low production costs. On the other hand, synthetic Nb libraries are emerging as an attractive alternative to animal immunization for the selection of antigen-specific Nbs. Here, we present the design and construction of a new synthetic nanobody library using the phage display technology, following a structure-based approach in which the three hypervariable loops were subjected to position-specific randomization schemes. The constructed library has a clonal diversity of 108 and an amino acid variability that matches the codon distribution set by design at each randomized position. We have explored the capabilities of the new library by selecting nanobodies specific for three antigens: vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF) and the glycoprotein complex (GnGc) of Andes virus. To test the potential of the library to yield a variety of antigen-specific Nbs, we introduced a biopanning strategy consisting of a single selection round using stringent conditions. Using this approach, we obtained several binders for each of the target antigens. The constructed library represents a promising nanobody source for different applications. © 2023 by the authors. | eng |
dc.language.iso | eng | |
dc.publisher | MDPI | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159311205&doi=10.3390%2fmolecules28093708&partnerID=40&md5=c0ff280c23421835560e4aa5146af1dc | |
dc.source | Molecules | |
dc.source | Molecules | eng |
dc.subject | Andes virus | eng |
dc.subject | Biopanning | eng |
dc.subject | CDR randomization | eng |
dc.subject | Nanobody | eng |
dc.subject | Phage display | eng |
dc.subject | Synthetic library | eng |
dc.subject | Tumor necrosis factor | eng |
dc.subject | Vascular endothelial growth factor | eng |
dc.title | Design and Construction of a Synthetic Nanobody Library: Testing Its Potential with a Single Selection Round Strategy | eng |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ciencias Básicas | spa |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.3390/molecules28093708 | |
dc.relation.citationvolume | 28 | |
dc.relation.citationissue | 9 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.affiliation | Contreras, M.A., Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, 4070386, Chile | |
dc.affiliation | Serrano-Rivero, Y., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia | |
dc.affiliation | González-Pose, A., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia | |
dc.affiliation | Salazar-Uribe, J., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia | |
dc.affiliation | Rubio-Carrasquilla, M., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia | |
dc.affiliation | Soares-Alves, M., Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, 4070386, Chile | |
dc.affiliation | Parra, N.C., Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, 4070386, Chile | |
dc.affiliation | Camacho-Casanova, F., Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, 4070386, Chile | |
dc.affiliation | Sánchez-Ramos, O., Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, 4070386, Chile | |
dc.affiliation | Moreno, E., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia | |
dc.relation.references | Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hammers, C., Songa, E.B., Bendahman, N., Hammers, R., Naturally Occurring Antibodies Devoid of Light Chains (1993) Nature, 363, pp. 446-448. , 8502296 | |
dc.relation.references | Valdés-Tresanco, M.S., Valdés-Tresanco, M.E., Molina-Abad, E., Moreno, E., NbThermo: A New Thermostability Database for Nanobodies (2023) Database, p. baad021. , 37042467 | |
dc.relation.references | Hassanzadeh-Ghassabeh, G., Devoogdt, N., De Pauw, P., Vincke, C., Muyldermans, S., Nanobodies and Their Potential Applications (2013) Nanomedicine, 8, pp. 1013-1026. , 23730699 | |
dc.relation.references | Morrison, C., Nanobody Approval Gives Domain Antibodies a Boost (2019) Nat. Rev. Drug. Discov, 18, pp. 485-487 | |
dc.relation.references | Keam, S.J., Ozoralizumab: First Approval (2023) Drugs, 83, pp. 87-92 | |
dc.relation.references | Muyldermans, S., A Guide to: Generation and Design of Nanobodies (2021) FEBS. J, 288, pp. 2084-2102 | |
dc.relation.references | Valdés-Tresanco, M.S., Molina-Zapata, A., Pose, A.G., Moreno, E., Structural Insights into the Design of Synthetic Nanobody Libraries (2022) Molecules, 27 | |
dc.relation.references | Moutel, S., Bery, N., Bernard, V., Keller, L., Lemesre, E., de Marco, A., Ligat, L., Olichon, A., NaLi-H1: A Universal Synthetic Library of Humanized Nanobodies Providing Highly Functional Antibodies and Intrabodies (2016) Elife, 5, p. e16228 | |
dc.relation.references | McMahon, C., Baier, A.S., Pascolutti, R., Wegrecki, M., Zheng, S., Ong, J.X., Erlandson, S.C., Ring, A.M., Yeast Surface Display Platform for Rapid Discovery of Conformationally Selective Nanobodies (2018) Nat. Struct. Mol. Biol, 25, pp. 289-296 | |
dc.relation.references | Zimmermann, I., Egloff, P., Hutter, C.A., Arnold, F.M., Stohler, P., Bocquet, N., Hug, M.N., Hetemann, L., Synthetic Single Domain Antibodies for the Conformational Trapping of Membrane Proteins (2018) Elife, 7, p. e34317 | |
dc.relation.references | Sevy, A.M., Chen, M.-T., Castor, M., Sylvia, T., Krishnamurthy, H., Ishchenko, A., Hsieh, C.-M., Structure- and Sequence-Based Design of Synthetic Single-Domain Antibody Libraries (2020) Protein. Eng. Des. Selection, 33, p. gzaa028 | |
dc.relation.references | Zimmermann, I., Egloff, P., Hutter, C.A.J., Kuhn, B.T., Bräuer, P., Newstead, S., Dawson, R.J.P., Seeger, M.A., Generation of Synthetic Nanobodies against Delicate Proteins (2020) Nat. Protoc, 15, pp. 1707-1741 | |
dc.relation.references | Zhao, Y., Wang, Y., Su, W., Li, S., Construction of Synthetic Nanobody Library in Mammalian Cells by DsDNA-Based Strategies (2021) Chem. BioChem, 22, pp. 2957-2965 | |
dc.relation.references | Chen, X., Gentili, M., Hacohen, N., Regev, A., A Cell-Free Nanobody Engineering Platform Rapidly Generates SARS-CoV-2 Neutralizing Nanobodies (2021) Nat. Commun, 12, p. 5506 | |
dc.relation.references | Moreno, E., Valdés-Tresanco, M.S., Molina-Zapata, A., Sánchez-Ramos, O., Structure-Based Design and Construction of a Synthetic Phage Display Nanobody Library (2022) BMC. Res. Notes, 15 | |
dc.relation.references | De Genst, E., Silence, K., Decanniere, K., Conrath, K., Loris, R., Kinne, J., Muyldermans, S., Wyns, L., Molecular Basis for the Preferential Cleft Recognition by Dromedary Heavy-Chain Antibodies (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 4586-4591 | |
dc.relation.references | Uchański, T., Pardon, E., Steyaert, J., Nanobodies to Study Protein Conformational States (2020) Curr. Opin. Struct. Biol, 60, pp. 117-123 | |
dc.relation.references | Shi, Z., Li, X., Wang, L., Sun, Z., Zhang, H., Chen, X., Cui, Q., Zhang, X., Structural Basis of Nanobodies Neutralizing SARS-CoV-2 Variants (2022) Structure, 30, pp. 707-720.e5 | |
dc.relation.references | Conrath, K.E., Lauwereys, M., Galleni, M., Matagne, A., Frère, J.-M., Kinne, J., Wyns, L., Muyldermans, S., β-Lactamase Inhibitors Derived from Single-Domain Antibody Fragments Elicited in the Camelidae (2001) Antimicrob. Agents. Chemother, 45, pp. 2807-2812 | |
dc.relation.references | Dumoulin, M., Conrath, K., Van Meirhaeghe, A., Meersman, F., Heremans, K., Frenken, L.G.J., Muyldermans, S., Matagne, A., Single-Domain Antibody Fragments with High Conformational Stability (2002) Protein. Sci, 11, pp. 500-515 | |
dc.relation.references | Saerens, D., Pellis, M., Loris, R., Pardon, E., Dumoulin, M., Matagne, A., Wyns, L., Conrath, K., Identification of a Universal VHH Framework to Graft Non-Canonical Antigen-Binding Loops of Camel Single-Domain Antibodies (2005) J. Mol. Biol, 352, pp. 597-607. , 16095608 | |
dc.relation.references | Wei, G., Meng, W., Guo, H., Pan, W., Liu, J., Peng, T., Chen, L., Chen, C.-Y., Potent Neutralization of Influenza A Virus by a Single-Domain Antibody Blocking M2 Ion Channel Protein (2011) PLoS ONE, 6. , 22164266 | |
dc.relation.references | Yan, J., Li, G., Hu, Y., Ou, W., Wan, Y., Construction of a Synthetic Phage-Displayed Nanobody Library with CDR3 Regions Randomized by Trinucleotide Cassettes for Diagnostic Applications (2014) J. Transl. Med, 12, p. 343. , 25496223 | |
dc.relation.references | Chi, X., Liu, X., Wang, C., Zhang, X., Li, X., Hou, J., Ren, L., Yang, W., Humanized Single Domain Antibodies Neutralize SARS-CoV-2 by Targeting the Spike Receptor Binding Domain (2020) Nat. Commun, 11, p. 4528 | |
dc.relation.references | Vincke, C., Loris, R., Saerens, D., Martinez-Rodriguez, S., Muyldermans, S., Conrath, K., General Strategy to Humanize a Camelid Single-Domain Antibody and Identification of a Universal Humanized Nanobody Scaffold (2009) J. Biol. Chem, 284, pp. 3273-3284 | |
dc.relation.references | Cornish-Bowden, A., Nomenclature for Incompletely Specified Bases in Nucleic Acid Sequences: Rcommendations 1984 (1985) Nucleic Acids Res, 13, pp. 3021-3030 | |
dc.relation.references | Hoogenboom, H.R., Griffiths, A.D., Johnson, K.S., Chiswell, D.J., Hudson, P., Winter, G., Multi-Subunit Proteins on the Surface of Filamentous Phage: Methodologies for Displaying Antibody (Fab) Heavy and Light Chains (1991) Nucleic Acids Res, 19, pp. 4133-4137 | |
dc.relation.references | van Loo, G., Bertrand, M.J.M., Death by TNF: A Road to Inflammation (2022) Nat. Rev. Immunol, 15, pp. 1-15 | |
dc.relation.references | Leone, G.M., Mangano, K., Petralia, M.C., Nicoletti, F., Fagone, P., Past, Present and (Foreseeable) Future of Biological Anti-TNF Alpha Therapy (2023) J. Clin. Med, 12 | |
dc.relation.references | Ghalehbandi, S., Yuzugulen, J., Pranjol, M.Z.I., Pourgholami, M.H., The Role of VEGF in Cancer-Induced Angiogenesis and Research Progress of Drugs Targeting VEGF (2023) Eur. J. Pharmacol, p. 175586 | |
dc.relation.references | Arezumand, R., Alibakhshi, A., Ranjbari, J., Ramazani, A., Muyldermans, S., Nanobodies As Novel Agents for Targeting Angiogenesis in Solid Cancers (2017) Front. Immunol, 8, p. 1746 | |
dc.relation.references | Dennis, M.S., Zhang, M., Meng, Y.G., Kadkhodayan, M., Kirchhofer, D., Combs, D., Damico, L.A., Albumin Binding as a General Strategy for Improving the Pharmacokinetics of Proteins (2002) J. Biolo. Chem, 277, pp. 35035-35043 | |
dc.relation.references | Jonsson, A., Dogan, J., Herne, N., Abrahmsen, L., Nygren, P.-A., Engineering of a Femtomolar Affinity Binding Protein to Human Serum Albumin (2008) Protein Eng. Des. Sel, 21, pp. 515-527 | |
dc.relation.references | Johansson, M.U., Frick, I.-M., Nilsson, H., Kraulis, P.J., Hober, S., Jonasson, P., Linhult, M., Björck, L., Structure, Specificity, and Mode of Interaction for Bacterial Albumin-Binding Modules (2002) J. Biol. Chem, 277, pp. 8114-8120 | |
dc.relation.references | Eble, J.A., Titration ELISA as a Method to Determine the Dissociation Constant of Receptor Ligand Interaction (2018) J. Vis. Exp, 15, p. 57334 | |
dc.relation.references | Lakzaei, M., Rasaee, M.J., Fazaeli, A.A., Aminian, M., A Comparison of Three Strategies for Biopanning of Phage-scFv Library against Diphtheria Toxin (2019) J. Cell. Physiol, 234, pp. 9486-9494 | |
dc.relation.references | Jaroszewicz, W., Morcinek-Orłowska, J., Pierzynowska, K., Gaffke, L., Węgrzyn, G., Phage Display and Other Peptide Display Technologies (2022) FEMS Microbiol. Rev, 46, p. fuab052 | |
dc.relation.references | Scarrone, M., González-Techera, A., Alvez-Rosado, R., Delfin-Riela, T., Modernell, Á., González-Sapienza, G., Lassabe, G., Development of Anti-Human IgM Nanobodies as Universal Reagents for General Immunodiagnostics (2021) New Biotechnol, 64, pp. 9-16 | |
dc.relation.references | Roshan, R., Naderi, S., Behdani, M., Cohan, R.A., Ghaderi, H., Shokrgozar, M.A., Golkar, M., Kazemi-Lomedasht, F., Isolation and Characterization of Nanobodies against Epithelial Cell Adhesion Molecule as Novel Theranostic Agents for Cancer Therapy (2021) Mol. Immunol, 129, pp. 70-77 | |
dc.relation.references | Kazemi-Lomedasht, F., Behdani, M., Bagheri, K.P., Habibi-Anbouhi, M., Abolhassani, M., Arezumand, R., Shahbazzadeh, D., Mirzahoseini, H., Inhibition of Angiogenesis in Human Endothelial Cell Using VEGF Specific Nanobody (2015) Mol. Immunol, 65, pp. 58-67 | |
dc.relation.references | Wu, M., Tu, Z., Huang, F., He, Q., Fu, J., Li, Y., Panning Anti-LPS Nanobody as a Capture Target to Enrich Vibrio Fluvialis (2019) Biochem. Biophys. Res. Commun, 512, pp. 531-536. , 30905409 | |
dc.relation.references | Lunder, M., Bratkovič, T., Urleb, U., Kreft, S., Štrukelj, B., Ultrasound in Phage Display: A New Approach to Nonspecific Elution (2008) Biotechniques, 44, pp. 893-900. , 18533899 | |
dc.relation.references | Humphrey, W., Dalke, A., Schulten, K., VMD: Visual Molecular Dynamics (1996) J. Mol. Graph, 14, pp. 33-38. , 8744570 | |
dc.relation.references | Tonikian, R., Zhang, Y., Boone, C., Sidhu, S.S., Identifying Specificity Profiles for Peptide Recognition Modules from Phage-Displayed Peptide Libraries (2007) Nat. Protoc, 2, pp. 1368-1386 | |
dc.relation.references | Chen, G., Sidhu, S.S., Design and Generation of Synthetic Antibody Libraries for Phage Display (2014) Monoclonal Antibodies: Methods and Protocols, pp. 113-131. , Ossipow V., Fischer N., (eds), Humana Press, Totowa, NJ, USA | |
dc.relation.references | Contreras, M.A., Macaya, L., Neira, P., Camacho, F., González, A., Acosta, J., Montesino, R., Sánchez, O., New Insights on the Interaction Mechanism of RhTNFα with Its Antagonists Adalimumab and Etanercept (2020) Biochem. J, 477, pp. 3299-3311 | |
dc.relation.references | Parra, N.C., Mansilla, R., Aedo, G., Vispo, N.S., González-Horta, E.E., González-Chavarría, I., Castillo, C., Sánchez, O., Expression and Characterization of Human Vascular Endothelial Growth Factor Produced in SiHa Cells Transduced with Adenoviral Vector (2019) Protein J, 38, pp. 693-703 | |
dc.relation.references | Beltrán-Ortiz, C.E., Starck-Mendez, M.F., Fernández, Y., Farnós, O., González, E.E., Rivas, C.I., Camacho, F., Sánchez, O., Expression and Purification of the Surface Proteins from Andes Virus (2017) Protein. Expr. Purif, 139, pp. 63-70 | |
dc.relation.references | Baek, H., Suk, K., Kim, Y., Cha, S., An Improved Helper Phage System for Efficient Isolation of Specific Antibody Molecules in Phage Display (2002) Nucleic. Acids. Res, 30, p. e18 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |