Show simple item record

dc.contributor.authorCarvajal A.H.R
dc.contributor.authorRíos J.M
dc.contributor.authorZuleta A.A
dc.contributor.authorBolívar F.J
dc.contributor.authorCastaño J.G
dc.contributor.authorCorrea E
dc.contributor.authorEcheverria F
dc.contributor.authorLambrecht M
dc.contributor.authorLasanta M.I
dc.contributor.authorTrujillo F.J.P.
dc.date.accessioned2023-10-24T19:24:01Z
dc.date.available2023-10-24T19:24:01Z
dc.date.created2023
dc.identifier.issn2683768
dc.identifier.urihttp://hdl.handle.net/11407/7903
dc.description.abstractSeveral authors have shown promising results using Ti and Mg to develop materials that combine the benefits of these two metals, such as their low density and absence of harmful second phases, which makes them attractive for aerospace and biomedical applications as well as for hydrogen storage. However, titanium and magnesium are almost immiscible and there are great differences in processing temperatures of these two metals. Within the techniques reported in the literature for obtaining Ti-Mg alloys, powder metallurgy and high-energy ball milling are possibly the most popular. In this work, Ti and Mg powders were mixed using a high-energy ball mill and subsequently these mixes were sintered by hot isostatic pressing (HIP), under various conditions, to obtain Ti-Mg alloys with Mg %wt. close to the limit of solubility (x < 2%wt.). The results showed the influence of the sintering parameters in the microstructure of the sintered material, which allowed us to obtain a Ti-Mg alloy instead of a composite material. © 2023, The Author(s).eng
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85149991815&doi=10.1007%2fs00170-023-11126-5&partnerID=40&md5=a0b946dd4e8954b98bd808f0c9cc3b75
dc.sourceInt J Adv Manuf Technol
dc.sourceInternational Journal of Advanced Manufacturing Technologyeng
dc.subjectHigh-energy ball millingeng
dc.subjectHot isostatic pressingeng
dc.subjectPowder metallurgyeng
dc.subjectTitanium-magnesiumeng
dc.titleDevelopment of low content Ti-x%wt. Mg alloys by mechanical milling plus hot isostatic pressingeng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Materialesspa
dc.type.spaArtículo
dc.identifier.doi10.1007/s00170-023-11126-5
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationCarvajal, A.H.R., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52 – 21, Medellín, Colombia
dc.affiliationRíos, J.M., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52 – 21, Medellín, Colombia
dc.affiliationZuleta, A.A., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana UPB, Circular 1 No 70 – 01, Medellín, Colombia
dc.affiliationBolívar, F.J., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52 – 21, Medellín, Colombia
dc.affiliationCastaño, J.G., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52 – 21, Medellín, Colombia
dc.affiliationCorrea, E., Grupo de Investigación Materiales con Impacto – MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín UdeM, Carrera 87 No 30 – 65, Medellín, Colombia
dc.affiliationEcheverria, F., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52 – 21, Medellín, Colombia
dc.affiliationLambrecht, M., Grupo de Investigación de Ingeniería de Superficies y Materiales Nanoestructurados, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
dc.affiliationLasanta, M.I., Grupo de Investigación de Ingeniería de Superficies y Materiales Nanoestructurados, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
dc.affiliationTrujillo, F.J.P., Grupo de Investigación de Ingeniería de Superficies y Materiales Nanoestructurados, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
dc.relation.referencesFang, Z.Z., Paramore, J.D., Sun, P., Ravi Chandran, K.S., Zhang, Y., Xia, Y., Cao, F., Free, M., Powder metallurgy of titanium–past, present, and future (2018) Int Mater Rev, 63 (7), pp. 407-459
dc.relation.referencesEsteban, P.G., Bolzoni, L., Ruiz-Navas, E.M., Gordo, E., Introducción al procesado pulvimetalúrgico del titanio (2011) Rev Metal, 47 (2), pp. 169-187
dc.relation.referencesBolokang, A.S., Phasha, M.J., Motaung, D.E., Cummings, F.R., Muller, T.F.G., Arend, C.J., Microstructure and phase transformation on milled and unmilled Ti induced by water quenching (2014) Mater Lett, 132, pp. 157-161
dc.relation.referencesYu, H., Sun, Y., Hu, L., Wan, Z., Zhou, H., Microstructure and properties of mechanically milled AZ61 powders dispersed with submicron/nanometer Ti particulates (2017) Mater Charact, 127, pp. 272-278
dc.relation.referencesOuyang, S., Huang, Q., Liu, Y., Ouyang, Z., Liang, L., Powder metallurgical Ti-Mg metal-metal composites facilitate osteoconduction and osseointegration for orthopedic application (2019) Bioact Mater, 4, pp. 37-42
dc.relation.referencesKorablov, D., Besenbacher, F., Jensen, T.R., Ternary compounds in the magnesium–titanium hydrogen storage system (2014) Int J Hydrogen Energy, 39, pp. 9700-9708
dc.relation.referencesÇakmak, G., Károly, Z., Mohai, I., Ozturk, T., Szepvolgyi, J., The processing of Mg–Ti for hydrogen storage
dc.relation.referencesmechanical milling and plasma synthesis (2010) Int J Hydrogen Energy, 35, pp. 10412-10418
dc.relation.referencesRousselot, S., Bichat, M.-P., Guay, D., Roué, L., Structure and electrochemical hydrogen storage properties of Mg-Ti based materials prepared by mechanical alloying (2019) ECS Trans, 16, pp. 91-100
dc.relation.referencesYe, H.Z., Liu, X.Y., Microstructure and tensile properties of Ti6Al4V/AM60B magnesium matrix composite (2005) J Alloys Compd, 402, pp. 162-169
dc.relation.referencesXianhua, C., Yuxiao, G., Fusheng, P., Research progress in magnesium alloys as functional materials (2016) Rare Met Mater Eng, 45 (9), pp. 2269-2274
dc.relation.referencesHoffmann, I., Cheng, Y.-T., Puleo, D.A., Song, G., Waldo, R.A., Mg-Ti: a possible biodegradable, biocompatible, mechanically matched material for temporary implants (2011) MRS Proc, 1301, pp. mrsf10-1301-oo06-07
dc.relation.referencesLiu, Y., Li, K., Luo, T., Song, M., Wu, H., Xiao, J., Tan, Y., Tang, H., Powder metallurgical low-modulus Ti-Mg alloys for biomedical applications (2015) Mater Sci Eng C, 56, pp. 241-250
dc.relation.referencesBalog, M., Ibrahim, A.M.H., Krizik, P., Klimova, A., Catic, A., Schauperl, Z., Bioactive Ti + Mg composites fabricated by powder metallurgy: the relation between the microstructure and mechanical properties (2019) J Mech Behav Biomed Mater, 90, pp. 45-53
dc.relation.referencesCetin, Y., Ibrahim, A.M.H., Gungor, A., Yildzhan, Y., Balog, M., Krizik, P., In-vitro evaluation of a partially biodegradable TiMg dental implant: the cytotoxicity, genotoxicity, and oxidative stress (2020) Materialia, 14, p. 100899
dc.relation.referencesMachio, C., Nyabadza, D., Sibanda, V., Chikwanda, H.K., Characterization of mechanically alloyed f.c.c. Ti–Mg-based powders (2011) Powder Technol, 207, pp. 387-395
dc.relation.referencesSuryanarayana, C., Froes, F.H., Nanocrystalline titanium-magnesium alloys through mechanical alloying (1990) J Mater Res, 5, pp. 1880-1886
dc.relation.referencesMurray, J.L., The Mg−Ti (magnesium-titanium) system (1986) Bull Alloy Phase Diagrams, 7, pp. 245-248
dc.relation.referencesAsano, K., Enoki, H., Akiba, E., Synthesis of HCP, FCC and BCC structure alloys in the Mg-Ti binary system by means of ball milling (2009) J Alloys Compd, 480, pp. 558-563
dc.relation.referencesSenkov, O., Cavusoglu, M., Froes, F.H.S., Synthesis of a low-density Ti–Mg–Si alloy (2000) J Alloys Compd, 297, pp. 246-252
dc.relation.referencesLu, W.-C., Ou, S.-F., Lin, M.-H., Wong, M.-F., Hydriding characteristics of Mg–Ti alloys prepared by reactive mechanical grinding and hydrogen pulverization (2016) J Alloys Compd, 664, pp. 193-198
dc.relation.referencesWuquiang, A., Yaojun, L., Fei, C., Microstructure and mechanical properties of Ti–Mg lightweight heterostructured materials (2022) Mater Sci Eng A, 850
dc.relation.referencesKalisvaart, W.P., Wondergem, H.J., Bakker, F., Notten, P.H.L., Mg–Ti based materials for electrochemical hydrogen storage (2007) J Mater Res, 22, pp. 1640-1649
dc.relation.referencesZhou, E., Suryanarayana, C., Froes, F.H., Effect of premilling elemental powders on solid solubility extension of magnesium in titanium by mechanical alloying (1995) Mater Lett, 23, pp. 27-31
dc.relation.referencesZhao, J., Wen, F., Feng, K., Wang, G.C., Interface microstructure regulation of Mg/Ti bimetals by thermal diffusion treatment of Ni-coated TC4 alloy (2022) Intermetallics, 147, p. 107594
dc.relation.referencesLiang, G., Schulz, R., Synthesis of Mg-Ti alloy by mechanical alloying (2003) J Mater Sci, 38, pp. 1179-1184
dc.relation.referencesAsano, K., Kim, H., Sakaki, K., Page, K., Hayashi, S., Nakamura, Y., Akiba, E., Synthesis and structural study of Ti-rich Mg–Ti hydrides (2014) J Alloys Compd, 593, pp. 132-136
dc.relation.referencesRousselot, S., Bichat, M.P., Guay, D., Roué, L., Structure and electrochemical behaviour of metastable Mg50Ti50 alloy prepared by ball milling (2008) J Power Sources, 175, pp. 621-624
dc.relation.referencesSuryanarayana, C., Mechanical alloying and milling (2001) Prog Mater Sci, 46, pp. 1-184
dc.relation.referencesSun, F., Sam, F.F.H., Synthesis and characterization of mechanical-alloyed Ti–xMg alloys (2002) J Alloys Compd, 340, pp. 220-225
dc.relation.referencesWei, X.S., Xu, W., Xia, K., Metastable orthorhombic phases at ambient pressure in mechanically milled pure Ti and Ti–Mg (2014) Scr Mater, 93, pp. 32-35
dc.relation.referencesHida, M., Asai, K., Takemoto, Y., Sakakibara, A., Solid solubility in nanocrystalline Ti/Mg and Mg/Ti composites powder produced by mechanical alloying (1997) Mater Sci Forum, 235-238, pp. 187-192
dc.relation.referencesCai, X.C., Song, J., Yang, T.T., Peng, Q.M., Huang, J.Y., Shen, T.D., A bulk nanocrystalline Mg–Ti alloy with high thermal stability and strength (2018) Mater Lett, 210, pp. 121-123
dc.relation.referencesCai, X.C., Sun, B.R., Liu, Y., Zhang, N., Zhang, N., Zhang, J.H., Yu, H., Shen, T.D., Selection of grain-boundary segregation elements for achieving stable and strong nanocrystalline Mg (2018) Mater Sci Eng A, 717, pp. 144-153
dc.relation.referencesCai, C., He, S., Li, L., Teng, Q., Song, B., Yan, C., Wei, Q., Shi, Y., In-situ TiB/Ti-6Al-4V composites with a tailored architecture produced by hot isostatic pressing: microstructure evolution, enhanced tensile properties and strengthening mechanisms (2019) Compos B, 164, pp. 546-558
dc.relation.referencesZhang, K., Mei, J., Wain, N., Wu, X., Effect of hot-isostatic-pressing parameters on the microstructure and properties of powder Ti-6Al-4V hot-isostatically-pressed samples (2010) Metallurgical and Materials Trans A, 41A, pp. 1033-1045
dc.relation.referencesHübler, D., Ghasemi, A., Riedel, R., Fleck, C., Kamrani, S., Effect of hot isostatic pressing on densification, microstructure and nanoindentation behaviour of Mg–SiC nanocomposites (2020) J Mater Sci, 55, pp. 10582-10592
dc.relation.references(2018) Standard specification for powder metallurgy (PM) titanium and titanium alloy structural components, , B988–18
dc.relation.references(2019) Standard test method for analysis of titanium alloys by wavelength dispersive X-ray fluorescence spectrometry, , E539–19
dc.relation.referencesLiang, L., Huang, Q., Wu, H., Ouyang, Z., Liu, T., He, H., Xia, J., Zhou, K., Stimulation of in vitro and in vivo osteogenesis by Ti-Mg composite materials with the sustained-release function of magnesium ions (2021) Colloids Surfaces B Biointerfaces, 197, p. 111360
dc.relation.referencesLong, Y., Guo, W.J., Li, Y., Bimodal-grained Ti fabricated by high-energy ball milling and spark plasma sintering (2016) Trans Nonferrous Met Soc China (eng Ed), 26, pp. 1170-1175
dc.relation.referencesCai, X., Ding, S., Li, Z., Zhan, X., Wen, K., Xu l, Zhang Y, Peng Y, Shen T,, Simultaneous sintering of low-melting-point Mg with high-melting-point Ti via a novel one-step high-pressure solid-phase sintering strategy (2021) J Alloys Compd, 858, p. 158344
dc.relation.referencesMoghadam, M.S., Fayyaz, A., Ardestani, M., Fabrication of titanium components by low-pressure powder injection moulding using hydride-dehydride titanium powder (2021) Powder Technol, 377, pp. 70-79
dc.relation.referencesNasrazadani, S., Hassani, S., Modern analytical techniques in failure analysis of aerospace, chemical, and oil and gas industries (2016) Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry., pp. 39-54
dc.relation.referencesWard-Close, C.M., Lu, G., Partridge, P.G., Microstructure of vapour-quenched Ti-Mg alloys (1994) Mater Sci Eng A, 189, pp. 247-255
dc.relation.referencesBárcena-González, G., Guerrero-Lebrero, M.P., Guerrero, E., Yañez, A., Nuñez-Moraleda, B., Kepaptsoglou, D., Lazarov, V.K., Galindo, P., HAADF-STEM image resolution enhancement using high-quality image reconstruction techniques: case of the Fe3O4(111) surface (2019) Microsc Microanal, 25, pp. 1297-1303
dc.relation.referencesLiang, L., Song, D., Wu, K., Ouyang, Z., Huang, Q., Lei, G., Zhou, K., Wu, H., Sequential activation of M1 and M2 phenotypes in macrophages by Mg degradation from Ti-Mg alloy for enhanced osteogenesis (2022) Biomater Res, 26, pp. 1-19
dc.relation.referencesEdalati, K., Emami, H., Staykov, A., Smith, A.J., Akiba, E., Horita, Z., Formation of metastable phases in magnesium - titanium system by high-pressure torsion and their hydrogen storage performance (2015) Acta Mater, 99, pp. 150-156
dc.relation.referencesZhen, J.G., Partridge, P.G., Steeds, J.W., Dm, W., Ward-close, C.M., Microstructure of vapour quenched Ti–29 wt% Mg alloy solid solution (1997) J Mater Sci, 32, pp. 3089-3099
dc.relation.referencesTejeda-Ochoa, A., Kametani, N., Carreño-Gallardo, C., Ledezma-Sillas, J.E., Adachi, N., Todaka, Y., Herrera Ramirez, J.M., Formation of a metastable fcc phase and high Mg solubility in the Ti-Mg system by mechanical alloying (2020) Powder Technol, 374, pp. 348-352
dc.relation.referencesRossi, M.C., Bayerlein, D.L., Gouvêa, E.D.S., Haro Rodríguez, M., Escuder, A., Borras, V., Evaluation of the influence of low Mg content on the mechanical and microstructural properties of β titanium alloy (2021) J Mater Res Technol, 10, pp. 916-925
dc.relation.referencesVydehiArun, J., (2006) Titanium alloys: an atlas of structures and fracture features. Physical Metallurgy of Titanium Alloys, , CRC Taylor and Francis, Boca Raton
dc.relation.referencesPolmear, I.J., Light alloys. From traditional alloys to nanocrystals (2006) Butterworth
dc.relation.referencesKestler, H., Clemens, H., Leyens, C., Peters, M., (2003) Titanium and titanium alloys
dc.relation.referencesDonachie, M., (2000), TITANIUM, a Technical Guide,2nd ed ASM International
dc.relation.referencesKim, Y., Kim, E.P., Song, Y.B., Lee, S.H., Kwon, Y.S., Microstructure and mechanical properties of hot isostatically pressed Ti-6Al-4V alloy (2014) J Alloys Compd, 603, pp. 207-212
dc.relation.referencesHoffmann, I., (2014) Magnesium-Titanium Alloys for Biomedical Applications
dc.relation.referencesAsano, K., Enoki, H., Akiba, E., Synthesis process of Mg–Ti BCC alloys by means of ball milling (2009) J Alloys Compd, 486, pp. 115-123
dc.relation.referencesSong, G.-L., Haddad, D., The topography of magnetron sputter-deposited Mg–Ti alloy thin films (2011) Mater Chem Phys, 125, pp. 548-552
dc.relation.referencesHieda, J., Niinomi, M., Nakai, M., Cho, K., In vitro biocompatibility of Ti–Mg alloys fabricated by direct current magnetron sputtering (2015) Mater Sci Eng C, 54, pp. 1-7
dc.relation.referencesLai, T., Xu, J.L., Huang, J., Wang, Q., Zhang, J.P., Luo, J.M., Partially biodegradable Ti–Mg composites prepared by microwave sintering for biomedical application (2022) Mater Charact, 185, p. 111748
dc.relation.referencesSun, F.-S., Froes, F.H.S., Effect of Mg on the microstructure and properties of TiAl alloys (2003) Mater Sci Eng A, 345, pp. 255-261
dc.relation.referencesYang, H., Chen, X., Huang, G., Song, J., She, J., Tan, J., Zheng, K., Pan, F., Microstructures and mechanical properties of titanium-reinforced magnesium matrix composites: review and perspective (2022) J Magnes Alloy, 10, pp. 2311-2333
dc.relation.referencesBhattacharyya, A., Maurice, D., On the evolution of stresses due to lattice misfit at a Ni-superalloy and YSZ interface (2018) Surfaces and Interfaces, 12, pp. 86-94
dc.relation.referencesHaruna, T., Motoya, D., Nakagawa, Y., Oishi, T., Corrosion resistance of titanium-magnesium alloy in weak acid solution containing fluoride ions (2013) Nippon Kinzoku Gakkaishi/Journal Japan Inst Met, 77, pp. 328-333
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record