dc.contributor.author | Flórez E | |
dc.contributor.author | Correa J. | |
dc.date.accessioned | 2023-10-24T19:24:01Z | |
dc.date.available | 2023-10-24T19:24:01Z | |
dc.date.created | 2023 | |
dc.identifier.issn | 3703908 | |
dc.identifier.uri | http://hdl.handle.net/11407/7904 | |
dc.description.abstract | We conducted a systematic study using the density functional theory (DFT) to provide a better understanding of the role of oxygen concentration in pristine phosphorene during Cu2+ adsorption in aqueous systems. The electronic characterization of phosphorene and oxidized phosphorene was done by calculating the gap and the chemical hardness. From the results, we concluded that the oxidized systems have a lower gap and hardness than the pristine system and that as the oxygen concentration increases, these values decrease compared to the other systems. The interaction of Cu2+ with the different surfaces was characterized using atomic charges, bond index, and X-Ray Photoelectron Spectroscopy (XPS). The adsorption energy values indicated that when phosphorene is oxidized, the interaction with Cu2+ is stronger compared to the pristine system and that the increase in the oxygen concentration also increases the adsorption capacity of phosphorene, which is related to the ease that this system has for the transfer to Cu2+ due to its small gap and chemical hardness values. Our results contribute to a better understanding of the effect of phosphorene surface oxygen concentration on Cu2+ adsorption reinforcing the idea that this type of 2D materials may potentially be used for heavy metal removal from wastewater. © 2023 Colombian Academy of Exact, Physical and Natural Sciences. All rights reserved. | eng |
dc.language.iso | spa | |
dc.publisher | Colombian Academy of Exact, Physical and Natural Sciences | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159841353&doi=10.18257%2fRACCEFYN.1763&partnerID=40&md5=438ca2b0f1d90779a7ee2b07d87ed428 | |
dc.source | Rev. Aca. Colomb. Cien. Exact., Fisicas Natur. | |
dc.source | Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales | eng |
dc.subject | DFT | eng |
dc.subject | Heavy metal (Cu2+) | eng |
dc.subject | Oxygen role | eng |
dc.subject | Phosphorene | eng |
dc.subject | Remediation | eng |
dc.subject | Simulation | eng |
dc.title | DFT analysis of phosphorene and oxidized phosphorene as Cu2+ adsorbent materials from aqueous solution [Análisis DFT de fosforeno y fosforeno oxidado como materiales adsorbentes de Cu2+ a partir de una solución acuosa] | eng |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ciencias Básicas | spa |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.18257/RACCEFYN.1763 | |
dc.relation.citationvolume | 47 | |
dc.relation.citationissue | 182 | |
dc.relation.citationstartpage | 151 | |
dc.relation.citationendpage | 159 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.affiliation | Flórez, E., Grupo de Materiales con Impacto, Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Correa, J., Grupo de Materiales con Impacto, Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | |
dc.relation.references | Ajith, M.P., Aswathi, M., Priyadarshini, E., Rajamani, P., Recent innovations of nanotechnology in water treatment: A comprehensive review (2021) Bioresource Technology, 342, p. 126000. , https://doi.org/10.1016/j.biortech.2021.126000 | |
dc.relation.references | Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange (1993) The Journal of Chemical Physics, 98, p. 5648. , https://doi.org/10.1063/1.464913 | |
dc.relation.references | Chen, O.P., Lin, Y. J., Cao, W. Z., Chang, C. T., Arsenic removal with phosphorene and adsorption in solution (2017) Materials Letters, 190, pp. 280-282. , https://doi.org/10.1016/j.matlet.2017.01.030 | |
dc.relation.references | Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009) Gaussian 09 Revision E.01, , Gaussian, Inc., Wallingford CT | |
dc.relation.references | Gómez-Pérez, J.F., Correa, J.D., Bartus Pravda, C., Kónya, Z., Kukovecz, Á., Dangling-to-Interstitial Oxygen Transition and Its Modifications of the Electronic Structure in Few-Layer Phosphorene (2020) Journal of Physical Chemistry C, 124 (44), pp. 24066-24072. , https://doi.org/10.1021/acs.jpcc.0c06542 | |
dc.relation.references | Hamid, Y., Liu, L., Usman, M., Naidu, R., Haris, M., Lin, Q., Ulhassan, Z., Yang, X., Functionalized biochars: Synthesis, characterization, and applications for removing trace elements from water (2022) Journal of Hazardous Materials, 437, p. 129337. , https://doi.org/10.1016/j.jhazmat.2022.129337 | |
dc.relation.references | Hoangh, A.T., Nizetic, S., Cheng, C.K., Luque, R., Thomas, S., Banh, T.L., Pham, V.V., Nguyen, X.P., Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review (2022) Chemosphere, 287, p. 131959. , https://doi.org/10.1016/j.chemosphere.2021.131959 | |
dc.relation.references | Huang, Y. H., Hsueh, C. L., Cheng, H. P., Su, L.C., Chen, C. Y., Thermodynamics and kinetics of adsorption of Cu(II) onto waste iron oxide (2007) Journal of Hazardous Materials, 144, pp. 406-411. , https://doi.org/10.1016/j.jhazmat.2006.10.061 | |
dc.relation.references | Keith, T.A., Frisch, M.J., Inclusion of Explicit Solvent Molecules in a Self-Consistent-Reaction Field Model of Solvation (1994) Modeling the Hydrogen Bond, pp. 22-35. , https://doi.org/10.1021/bk-1994-0569.ch003, En D. A. Smith, American Chemical Society | |
dc.relation.references | Kharwar, S., Singh, S., First-principles investigation of zigzag graphene nanoribbons based nanosensor for heavy metal detector (2021) Materials Today: Proceedings, 47, pp. 2227-2231. , https://doi.org/10.1016/j.matpr.2021.04.183 | |
dc.relation.references | Koopmans, T., Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms (1934) Physica, 1, pp. 104-113. , https://doi.org/10.1016/S0031-8914(34)90011-2 | |
dc.relation.references | Liaquat, H., Imran, M., Latif, S., Hussain, N., Bilal, M., Multifunctional nanomaterials and nanocomposites for sensing and monitoring of environmentally hazardous heavy metal contaminants (2022) Environmental Research, 214, p. 113795. , https://doi.org/10.1016/j.envres.2022.113795 | |
dc.relation.references | Mason, L.H., Harp, J. P., Han, D.Y., Pb Neurotoxicity: Neuropsychological Effects of Lead Toxicity (2014) BioMed Research International, 214, p. 840547. , https://doi.org/10.1155/2014/840547, Article ID 8 pages | |
dc.relation.references | Menazea, A.A., Ezzat, H.A., Omara, W., Basyouni, O.H., Ibrahim, S. A., Mohamed, A.A., Tawfik, W., Ibrahim, M.A., Chitosan/graphene oxide composite as an effective removal of Ni, Cu, As, Cd and Pb from wastewater (2020) Computational and Theoretical Chemistry, 1189, p. 112980. , https://doi.org/10.1016/j.comptc.2020.112980 | |
dc.relation.references | Pan, J., Gao, B., Guo, K., Gao, Y., Xu, X., Yue, Q., Insights into selective adsorption mechanism of copper and zinc ions onto biogas residue-based adsorbent: Theoretical calculation and electronegativity difference (2022) Science of the Total Environment, 805, p. 150413. , https://doi.org/10.1016/j.scitotenv.2021.150413 | |
dc.relation.references | Parr, R.G., Pearson, R.G., Absolute hardness: companion parameter to absolute electronegativity (1983) Journal of the American Chemical Society, 105, pp. 7512-7516. , https://doi.org/10.1021/ja00364a005 | |
dc.relation.references | Pearson, R.G., Chemical hardness and density functional theory (2005) Journal of Chemical Sciences volume, 117, pp. 369-377. , https://doi.org/10.1007/BF02708340 | |
dc.relation.references | Perdew, J.P., Burke, K., Wang, Y., Generalized gradient approximation for the exchange-correlation hole of a many-electron system (1996) Physycs Review B, 54 (23), pp. 16533-16539. , https://doi.org/10.1103/PhysRevB.54.16533 | |
dc.relation.references | Reed, A.E., Curtiss, L.A., Weinhold, F., Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint (1988) Chemical Reviews, 8, pp. 899-926. , https://doi.org/10.1021/cr00088a005 | |
dc.relation.references | Srivastava, M., Srivastava, A., DFT analysis of nitrogen and Boron doped Graphene sheet as lead detector (2021) Materials Science and Engineering B, 269, p. 115165. , https://doi.org/10.1016/j.mseb.2021.115165 | |
dc.relation.references | Ugwu, E.I., Othmani, A., Nnaji, C.C., A review on zeolites as cost-effective adsorbents for removal of heavy metals from aqueous environment (2022) International Journal of Environmental Science and Technology, 19, pp. 8061-8084. , https://doi.org/10.1007/s13762-021-03560-3 | |
dc.relation.references | Ullah, N., Mansha, M., Khan, I., Qurashi, A., Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: Recent advances and challenges (2018) Trends in Analytical Chemistry, 100, pp. 155-166. , https://doi.org/10.1016/j.trac.2018.01.002 | |
dc.relation.references | Uogintė, I., Lujanienė, G., Mažeika, K., Study of Cu (II), Co (II), Ni (II) and Pb (II) removal from aqueous solutions using magnetic Prussian blue nano-sorbent (2019) Journal of Hazardous Materials. Journal of Hazardous Materials, 269, pp. 226-235. , https://doi.org/10.1016/j.jhazmat.2019.02.039 | |
dc.relation.references | Wang, X., Kong, L., Zhou, S., Ma, C., Lin, W., Sun, X., Kirsanov, D., Wang, P., Development of QDs- based nanosensors for heavy metal detection: A review on transducer principles and in- situ detection (2022) Talanta, 239, p. 122903. , https://doi.org/10.1016/j.talanta.2021.122903 | |
dc.relation.references | Weigend, F., Ahlrichs, R., Balanced basis sets of split valences, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy (2005) Physical Chemistry Chemical Physics, 7, pp. 3297-3305. , https://doi.org/10.1039/B508541A | |
dc.relation.references | Wijaya, A.R., Ouchi, A. K., Tanaka, K., Cohen, M.D., Sirirattanachai, S., Shinjo, R., Ohde, S., Evaluation of heavy metal contents and Pb isotopic compositions in the Chao Phraya River sediments: Implication for anthropogenic inputs from urbanized areas, Bangkok (2013) Journal of Geochemical Exploration, 126-127, pp. 45-54. , https://doi.org/10.1016/j.gexplo.2012.12.009 | |
dc.relation.references | Zhao, Y., Truhlar, D., Density Functionals with Broad Applicability in Chemistry (2008) Acc. Chem. Res, 41 (2), pp. 157-167. , https://doi.org/10.1021/ar700111a | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |