Mostrar el registro sencillo del ítem

dc.contributor.authorFlórez E
dc.contributor.authorCorrea J.
dc.date.accessioned2023-10-24T19:24:01Z
dc.date.available2023-10-24T19:24:01Z
dc.date.created2023
dc.identifier.issn3703908
dc.identifier.urihttp://hdl.handle.net/11407/7904
dc.description.abstractWe conducted a systematic study using the density functional theory (DFT) to provide a better understanding of the role of oxygen concentration in pristine phosphorene during Cu2+ adsorption in aqueous systems. The electronic characterization of phosphorene and oxidized phosphorene was done by calculating the gap and the chemical hardness. From the results, we concluded that the oxidized systems have a lower gap and hardness than the pristine system and that as the oxygen concentration increases, these values decrease compared to the other systems. The interaction of Cu2+ with the different surfaces was characterized using atomic charges, bond index, and X-Ray Photoelectron Spectroscopy (XPS). The adsorption energy values indicated that when phosphorene is oxidized, the interaction with Cu2+ is stronger compared to the pristine system and that the increase in the oxygen concentration also increases the adsorption capacity of phosphorene, which is related to the ease that this system has for the transfer to Cu2+ due to its small gap and chemical hardness values. Our results contribute to a better understanding of the effect of phosphorene surface oxygen concentration on Cu2+ adsorption reinforcing the idea that this type of 2D materials may potentially be used for heavy metal removal from wastewater. © 2023 Colombian Academy of Exact, Physical and Natural Sciences. All rights reserved.eng
dc.language.isospa
dc.publisherColombian Academy of Exact, Physical and Natural Sciences
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85159841353&doi=10.18257%2fRACCEFYN.1763&partnerID=40&md5=438ca2b0f1d90779a7ee2b07d87ed428
dc.sourceRev. Aca. Colomb. Cien. Exact., Fisicas Natur.
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturaleseng
dc.subjectDFTeng
dc.subjectHeavy metal (Cu2+)eng
dc.subjectOxygen roleeng
dc.subjectPhosphoreneeng
dc.subjectRemediationeng
dc.subjectSimulationeng
dc.titleDFT analysis of phosphorene and oxidized phosphorene as Cu2+ adsorbent materials from aqueous solution [Análisis DFT de fosforeno y fosforeno oxidado como materiales adsorbentes de Cu2+ a partir de una solución acuosa]eng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.18257/RACCEFYN.1763
dc.relation.citationvolume47
dc.relation.citationissue182
dc.relation.citationstartpage151
dc.relation.citationendpage159
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationFlórez, E., Grupo de Materiales con Impacto, Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationCorrea, J., Grupo de Materiales con Impacto, Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesAjith, M.P., Aswathi, M., Priyadarshini, E., Rajamani, P., Recent innovations of nanotechnology in water treatment: A comprehensive review (2021) Bioresource Technology, 342, p. 126000. , https://doi.org/10.1016/j.biortech.2021.126000
dc.relation.referencesBecke, A.D., Density-functional thermochemistry. III. The role of exact exchange (1993) The Journal of Chemical Physics, 98, p. 5648. , https://doi.org/10.1063/1.464913
dc.relation.referencesChen, O.P., Lin, Y. J., Cao, W. Z., Chang, C. T., Arsenic removal with phosphorene and adsorption in solution (2017) Materials Letters, 190, pp. 280-282. , https://doi.org/10.1016/j.matlet.2017.01.030
dc.relation.referencesFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009) Gaussian 09 Revision E.01, , Gaussian, Inc., Wallingford CT
dc.relation.referencesGómez-Pérez, J.F., Correa, J.D., Bartus Pravda, C., Kónya, Z., Kukovecz, Á., Dangling-to-Interstitial Oxygen Transition and Its Modifications of the Electronic Structure in Few-Layer Phosphorene (2020) Journal of Physical Chemistry C, 124 (44), pp. 24066-24072. , https://doi.org/10.1021/acs.jpcc.0c06542
dc.relation.referencesHamid, Y., Liu, L., Usman, M., Naidu, R., Haris, M., Lin, Q., Ulhassan, Z., Yang, X., Functionalized biochars: Synthesis, characterization, and applications for removing trace elements from water (2022) Journal of Hazardous Materials, 437, p. 129337. , https://doi.org/10.1016/j.jhazmat.2022.129337
dc.relation.referencesHoangh, A.T., Nizetic, S., Cheng, C.K., Luque, R., Thomas, S., Banh, T.L., Pham, V.V., Nguyen, X.P., Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review (2022) Chemosphere, 287, p. 131959. , https://doi.org/10.1016/j.chemosphere.2021.131959
dc.relation.referencesHuang, Y. H., Hsueh, C. L., Cheng, H. P., Su, L.C., Chen, C. Y., Thermodynamics and kinetics of adsorption of Cu(II) onto waste iron oxide (2007) Journal of Hazardous Materials, 144, pp. 406-411. , https://doi.org/10.1016/j.jhazmat.2006.10.061
dc.relation.referencesKeith, T.A., Frisch, M.J., Inclusion of Explicit Solvent Molecules in a Self-Consistent-Reaction Field Model of Solvation (1994) Modeling the Hydrogen Bond, pp. 22-35. , https://doi.org/10.1021/bk-1994-0569.ch003, En D. A. Smith, American Chemical Society
dc.relation.referencesKharwar, S., Singh, S., First-principles investigation of zigzag graphene nanoribbons based nanosensor for heavy metal detector (2021) Materials Today: Proceedings, 47, pp. 2227-2231. , https://doi.org/10.1016/j.matpr.2021.04.183
dc.relation.referencesKoopmans, T., Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms (1934) Physica, 1, pp. 104-113. , https://doi.org/10.1016/S0031-8914(34)90011-2
dc.relation.referencesLiaquat, H., Imran, M., Latif, S., Hussain, N., Bilal, M., Multifunctional nanomaterials and nanocomposites for sensing and monitoring of environmentally hazardous heavy metal contaminants (2022) Environmental Research, 214, p. 113795. , https://doi.org/10.1016/j.envres.2022.113795
dc.relation.referencesMason, L.H., Harp, J. P., Han, D.Y., Pb Neurotoxicity: Neuropsychological Effects of Lead Toxicity (2014) BioMed Research International, 214, p. 840547. , https://doi.org/10.1155/2014/840547, Article ID 8 pages
dc.relation.referencesMenazea, A.A., Ezzat, H.A., Omara, W., Basyouni, O.H., Ibrahim, S. A., Mohamed, A.A., Tawfik, W., Ibrahim, M.A., Chitosan/graphene oxide composite as an effective removal of Ni, Cu, As, Cd and Pb from wastewater (2020) Computational and Theoretical Chemistry, 1189, p. 112980. , https://doi.org/10.1016/j.comptc.2020.112980
dc.relation.referencesPan, J., Gao, B., Guo, K., Gao, Y., Xu, X., Yue, Q., Insights into selective adsorption mechanism of copper and zinc ions onto biogas residue-based adsorbent: Theoretical calculation and electronegativity difference (2022) Science of the Total Environment, 805, p. 150413. , https://doi.org/10.1016/j.scitotenv.2021.150413
dc.relation.referencesParr, R.G., Pearson, R.G., Absolute hardness: companion parameter to absolute electronegativity (1983) Journal of the American Chemical Society, 105, pp. 7512-7516. , https://doi.org/10.1021/ja00364a005
dc.relation.referencesPearson, R.G., Chemical hardness and density functional theory (2005) Journal of Chemical Sciences volume, 117, pp. 369-377. , https://doi.org/10.1007/BF02708340
dc.relation.referencesPerdew, J.P., Burke, K., Wang, Y., Generalized gradient approximation for the exchange-correlation hole of a many-electron system (1996) Physycs Review B, 54 (23), pp. 16533-16539. , https://doi.org/10.1103/PhysRevB.54.16533
dc.relation.referencesReed, A.E., Curtiss, L.A., Weinhold, F., Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint (1988) Chemical Reviews, 8, pp. 899-926. , https://doi.org/10.1021/cr00088a005
dc.relation.referencesSrivastava, M., Srivastava, A., DFT analysis of nitrogen and Boron doped Graphene sheet as lead detector (2021) Materials Science and Engineering B, 269, p. 115165. , https://doi.org/10.1016/j.mseb.2021.115165
dc.relation.referencesUgwu, E.I., Othmani, A., Nnaji, C.C., A review on zeolites as cost-effective adsorbents for removal of heavy metals from aqueous environment (2022) International Journal of Environmental Science and Technology, 19, pp. 8061-8084. , https://doi.org/10.1007/s13762-021-03560-3
dc.relation.referencesUllah, N., Mansha, M., Khan, I., Qurashi, A., Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: Recent advances and challenges (2018) Trends in Analytical Chemistry, 100, pp. 155-166. , https://doi.org/10.1016/j.trac.2018.01.002
dc.relation.referencesUogintė, I., Lujanienė, G., Mažeika, K., Study of Cu (II), Co (II), Ni (II) and Pb (II) removal from aqueous solutions using magnetic Prussian blue nano-sorbent (2019) Journal of Hazardous Materials. Journal of Hazardous Materials, 269, pp. 226-235. , https://doi.org/10.1016/j.jhazmat.2019.02.039
dc.relation.referencesWang, X., Kong, L., Zhou, S., Ma, C., Lin, W., Sun, X., Kirsanov, D., Wang, P., Development of QDs- based nanosensors for heavy metal detection: A review on transducer principles and in- situ detection (2022) Talanta, 239, p. 122903. , https://doi.org/10.1016/j.talanta.2021.122903
dc.relation.referencesWeigend, F., Ahlrichs, R., Balanced basis sets of split valences, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy (2005) Physical Chemistry Chemical Physics, 7, pp. 3297-3305. , https://doi.org/10.1039/B508541A
dc.relation.referencesWijaya, A.R., Ouchi, A. K., Tanaka, K., Cohen, M.D., Sirirattanachai, S., Shinjo, R., Ohde, S., Evaluation of heavy metal contents and Pb isotopic compositions in the Chao Phraya River sediments: Implication for anthropogenic inputs from urbanized areas, Bangkok (2013) Journal of Geochemical Exploration, 126-127, pp. 45-54. , https://doi.org/10.1016/j.gexplo.2012.12.009
dc.relation.referencesZhao, Y., Truhlar, D., Density Functionals with Broad Applicability in Chemistry (2008) Acc. Chem. Res, 41 (2), pp. 157-167. , https://doi.org/10.1021/ar700111a
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem