Show simple item record

dc.contributor.authorRamírez-Velásquez I.M
dc.contributor.authorBedoya-Calle Á.H
dc.contributor.authorVélez E
dc.contributor.authorCaro-Lopera F.J.
dc.date.accessioned2023-10-24T19:24:01Z
dc.date.available2023-10-24T19:24:01Z
dc.date.created2023
dc.identifier.issn16616596
dc.identifier.urihttp://hdl.handle.net/11407/7905
dc.description.abstractBetanidin (Bd) is a nitrogenous metabolite with significant bioactive potential influenced by pH. Its free radical scavenging activity and deprotonation pathway are crucial to studying its physicochemical properties. Motivated by the published discrepancies about the best deprotonation routes in Bd, this work explores all possible pathways for proton extractions on that molecule, by using the direct approach method based on pKa. The complete space of exploration is supported by a linear relation with constant slope, where the pKa is written in terms of the associated deprotonated molecule energy. The deprotonation rounds 1, …, 6 define groups of parallel linear models with constant slope. The intercepts of the models just depend on the protonated energy for each round, and then the pKa can be trivially ordered and explained by the energy. We use the direct approximation method to obtain the value of pKa. We predict all possible outcomes based on a linear model of the energy and some related verified assumptions. We also include a new measure of similarity or dissimilarity between the protonated and deprotonated molecules, via a geometric–chemical descriptor called the Riemann–Mulliken distance (RMD). The RMD considers the cartesian coordinates of the atoms, the atomic mass, and the Mulliken charges. After exploring the complete set of permutations, we show that the successive deprotonation process does not inherit the local energy minimum and that the commutativity of the paths does not hold either. The resulting clusterization of pKa can be explained by the local acid and basic groups of the BD, and the successive deprotonation can be predicted by using the chemical explained linear models, which can avoid unnecessary optimizations. Another part of the research uses our own algorithm based on shape theory to determine the protein’s active site automatically, and molecular dynamics confirmed the results of the molecular docking of Bd in protonated and anionic form with the enzyme aldose reductase (AR). Also, we calculate the descriptors associated with the SET and SPLET mechanisms. © 2023 by the authors.eng
dc.language.isoeng
dc.publisherMDPI
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85147893330&doi=10.3390%2fijms24032923&partnerID=40&md5=2a3ca7696be8dc594aa2b1f7c1195574
dc.sourceInt. J. Mol. Sci.
dc.sourceInternational Journal of Molecular Scienceseng
dc.subjectBetanidineng
dc.subjectCluster predictioneng
dc.subjectDeprotonationeng
dc.subjectLinear modeleng
dc.subjectPKa predictioneng
dc.subjectRiemann–Mulliken distanceeng
dc.subjectShape theoryeng
dc.titleDissociation Mode of the O–H Bond in Betanidin, pKa-Clusterization Prediction, and Molecular Interactions via Shape Theory and DFT Methodseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.3390/ijms24032923
dc.relation.citationvolume24
dc.relation.citationissue3
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationRamírez-Velásquez, I.M., Faculty of Exact and Applied Sciences, Instituto Tecnológico Metropolitano, Medellín, 050034, Colombia, Faculty of Basic Sciences, University of Medellin, Medellín, 050026, Colombia
dc.affiliationBedoya-Calle, Á.H., Faculty of Basic Sciences, University of Medellin, Medellín, 050026, Colombia
dc.affiliationVélez, E., Faculty of Basic Sciences, University of Medellin, Medellín, 050026, Colombia
dc.affiliationCaro-Lopera, F.J., Faculty of Basic Sciences, University of Medellin, Medellín, 050026, Colombia
dc.relation.referencesDelgado-Vargas, F., Jiménez, A.R., Paredes-López, O., Natural Pigments: Carotenoids, Anthocyanins, and Betalains—Characteristics, Biosynthesis, Processing, and Stability (2000) Crit. Rev. Food Sci. Nutr, 40, pp. 173-289. , 10850526
dc.relation.referencesGandía-Herrero, F., García-Carmona, F., Biosynthesis of Betalains: Yellow and Violet Plant Pigments (2013) Trends Plant Sci, 18, pp. 334-343
dc.relation.referencesMiguel, M.G., Betalains in Some Species of the Amaranthaceae Family: A Review (2018) Antioxidants, 7. , 29617324
dc.relation.referencesGandía-Herrero, F., Escribano, J., García-Carmona, F., Biological Activities of Plant Pigments Betalains (2016) Crit. Rev. Food Sci. Nutr, 56, pp. 937-945
dc.relation.referencesMikołajczyk-Bator, K., Pawlak, S., The Effect of Thermal Treatment on Antioxidant Capacity and Pigment Contents in Separated Betalain Fractions (2016) Acta Sci. Pol. Technol. Aliment, 15, pp. 257-265
dc.relation.referencesGandía-Herrero, F., Jiménez-Atiénzar, M., Cabanes, J., García-Carmona, F., Escribano, J., Stabilization of the Bioactive Pigment of Opuntia Fruits through Maltodextrin Encapsulation (2010) J. Agric. Food Chem, 58, pp. 10646-10652
dc.relation.referencesMereddy, R., Chan, A., Fanning, K., Nirmal, N., Sultanbawa, Y., Betalain Rich Functional Extract with Reduced Salts and Nitrate Content from Red Beetroot (Beta vulgaris L.) Using Membrane Separation Technology (2017) Food Chem, 215, pp. 311-317. , 27542480
dc.relation.referencesKanner, J., Harel, S., Granit, R., BetalainsA New Class of Dietary Cationized Antioxidants (2001) J. Agric. Food Chem, 49, pp. 5178-5185. , 11714300
dc.relation.referencesPrieto-Santiago, V., Cavia, M., Alonso-Torre, S., Carrillo, C., Relationship between Color and Betalain Content in Different Thermally Treated Beetroot Products (2020) J. Food Sci. Technol, 57, pp. 3305-3313
dc.relation.referencesGliszczyńska-Świgło, A., Szymusiak, H., Malinowska, P., Betanin, the Main Pigment of Red Beet: Molecular Origin of Its Exceptionally High Free Radical-Scavenging Activity (2006) Food Addit. Contam, 23, pp. 1079-1087
dc.relation.referencesTaira, J., Tsuchida, E., Katoh, M.C., Uehara, M., Ogi, T., Antioxidant Capacity of Betacyanins as Radical Scavengers for Peroxyl Radical and Nitric Oxide (2015) Food Chem, 166, pp. 531-536
dc.relation.referencesSpiegel, M., Gamian, A., Sroka, Z., Antiradical Activity of Beetroot (Beta vulgaris L.) Betalains (2021) Molecules, 26. , 33922131
dc.relation.referencesDeepha, V., Praveena, R., K, S., DFT Studies on Antioxidant Mechanisms, Electronic Properties, Spectroscopic (FT-IR and UV) and NBO Analysis of C-Glycosyl Flavone, an Isoorientin (2014) J. Mol. Struct, 1082, pp. 131-142
dc.relation.referencesCalogero, G., Bartolotta, A., Di Marco, G., Di Carlo, A., Bonaccorso, F., Vegetable-Based Dye-Sensitized Solar Cells (2015) Chem. Soc. Rev, 44, pp. 3244-3294. , 25855097
dc.relation.referencesGuerrero-Rubio, M.A., Escribano, J., García-Carmona, F., Gandía-Herrero, F., Light Emission in Betalains: From Fluorescent Flowers to Biotechnological Applications (2020) Trends Plant Sci, 25, pp. 159-175. , 31843371
dc.relation.referencesAzeredo, H.M.C., Betalains: Properties, Sources, Applications, and Stability—A Review (2009) Int. J. Food Sci. Technol, 44, pp. 2365-2376
dc.relation.referencesHo, J., Are Thermodynamic Cycles Necessary for Continuum Solvent Calculation of PKas and Reduction Potentials? (2014) Phys. Chem. Chem. Phys, 17, pp. 2859-2868
dc.relation.referencesThapa, B., Schlegel, H.B., Improved PKa Prediction of Substituted Alcohols, Phenols, and Hydroperoxides in Aqueous Medium Using Density Functional Theory and a Cluster-Continuum Solvation Model (2017) J. Phys. Chem. A, 121, pp. 4698-4706
dc.relation.referencesGalano, A., Pérez-González, A., Castañeda-Arriaga, R., Muñoz-Rugeles, L., Mendoza-Sarmiento, G., Romero-Silva, A., Ibarra-Escutia, A., Hernández-Olivares, M.A., Empirically Fitted Parameters for Calculating PKa Values with Small Deviations from Experiments Using a Simple Computational Strategy (2016) J. Chem. Inf. Model, 56, pp. 1714-1724
dc.relation.referencesRodriguez, S.A., Baumgartner, M.T., Betanidin PK a Prediction Using DFT Methods (2020) ACS Omega, 5, pp. 13751-13759
dc.relation.referencesLe, H., Mean Size-and-Shapes and Mean Shapes: A Geometric Point of View (1995) Adv. Appl. Probab, 27, pp. 44-55
dc.relation.referencesQuintero, J.H., Mariño, A., Šiller, L., Restrepo-Parra, E., Caro-Lopera, F., Rocking Curves of Gold Nitride Species Prepared by Arc Pulsed—Physical Assisted Plasma Vapor Deposition (2017) Surf. Coat. Technol, 309, pp. 249-257
dc.relation.referencesValencia, G.M., Anaya, J.A., Velásquez, É.A., Ramo, R., Caro-Lopera, F.J., About Validation-Comparison of Burned Area Products (2020) Remote Sens, 12
dc.relation.referencesVillarreal-Rios, A.L., Bedoya-Calle, Á.H., Caro-Lopera, F.J., Ortiz-Méndez, U., García-Méndez, M., Pérez-Ramírez, F.O., Ultrathin Tunable Conducting Oxide Films for Near-IR Applications: An Introduction to Spectroscopy Shape Theory (2019) SN Appl. Sci, 1, p. 1553
dc.relation.referencesRamirez-Velasquez, I.M., Velez, E., Bedoya-Calle, A., Caro-Lopera, F.J., Mechanism of Antioxidant Activity of Betanin, Betanidin and Respective C15-Epimers via Shape Theory, Molecular Dynamics, Density Functional Theory and Infrared Spectroscopy (2022) Molecules, 27. , 35335368
dc.relation.referencesBrownlee, M., The Pathobiology of Diabetic Complications: A Unifying Mechanism (2005) Diabetes, 54, pp. 1615-1625
dc.relation.referencesKato, A., Yasuko, H., Goto, H., Hollinshead, J., Nash, R.J., Adachi, I., Inhibitory Effect of Rhetsinine Isolated from Evodia Rutaecarpa on Aldose Reductase Activity (2009) Phytomedicine Int. J. Phytother. Phytopharm, 16, pp. 258-261
dc.relation.referencesZuo, G., Kim, H.-Y., Guillen Quispe, Y.N., Wang, Z., Kim, K.-H., Gonzales Arce, P.H., Lim, S.-S., Valeriana Rigida Ruiz & Pav. Root Extract: A New Source of Caffeoylquinic Acids with Antioxidant and Aldose Reductase Inhibitory Activities (2021) Foods, 10
dc.relation.referencesChen, H., Zhang, X., Zhang, X., Fan, Z., Liu, W., Lei, Y., Zhu, C., Ma, B., Dihydrobenzoxazinone Derivatives as Aldose Reductase Inhibitors with Antioxidant Activity (2020) Bioorg. Med. Chem, 28, p. 115699
dc.relation.referencesWang, Z., Hwang, S.H., Guillen Quispe, Y.N., Gonzales Arce, P.H., Lim, S.S., Investigation of the Antioxidant and Aldose Reductase Inhibitory Activities of Extracts from Peruvian Tea Plant Infusions (2017) Food Chem, 231, pp. 222-230
dc.relation.referencesKim, S.B., Hwang, S.H., Suh, H.-W., Lim, S.S., Phytochemical Analysis of Agrimonia Pilosa Ledeb, Its Antioxidant Activity and Aldose Reductase Inhibitory Potential (2017) Int. J. Mol. Sci, 18. , 28208627
dc.relation.referencesMortier, W., Ghosh, S.K., Shankar, S., Electronegativity-Equalization Method for the Calculation of Atomic Charges in Molecules (1986) J. Am. Chem. Soc, 108, pp. 4315-4320
dc.relation.referencesRaček, T., Pazúriková, J., Svobodová Vařeková, R., Geidl, S., Křenek, A., Falginella, F.L., Horský, V., Koča, J., NEEMP: Software for Validation, Accurate Calculation and Fast Parameterization of EEM Charges (2016) J. Cheminform, 8, p. 57. , 27803746
dc.relation.referencesNandy, R., Sankararaman, S., Donor-Acceptor Substituted Phenylethynyltriphenylenes—Excited State Intramolecular Charge Transfer, Solvatochromic Absorption and Fluorescence Emission (2010) Beilstein J. Org. Chem, 6, pp. 992-1001. , 21085512
dc.relation.referencesMusialik, M., Kuzmicz, R., Pawłowski, T.S., Litwinienko, G., Acidity of Hydroxyl Groups: An Overlooked Influence on Antiradical Properties of Flavonoids (2009) J. Org. Chem, 74, pp. 2699-2709. , 19275193
dc.relation.referencesOprea, C.I., Dumbravă, A., Enache, I., Georgescu, A., Gîrţu, M.A., A Combined Experimental and Theoretical Study of Natural Betalain Pigments Used in Dye-Sensitized Solar Cells (2012) J. Photochem. Photobiol. Chem, 240, pp. 5-13
dc.relation.referencesQin, C., Clark, A.E., DFT Characterization of the Optical and Redox Properties of Natural Pigments Relevant to Dye-Sensitized Solar Cells (2007) Chem. Phys. Lett, 438, pp. 26-30
dc.relation.referencesGandía-Herrero, F., Escribano, J., García-Carmona, F., Structural Implications on Color, Fluorescence, and Antiradical Activity in Betalains (2010) Planta, 232, pp. 449-460
dc.relation.referencesStrack, D., Vogt, T., Schliemann, W., Recent Advances in Betalain Research (2003) Phytochemistry, 62, pp. 247-269
dc.relation.referencesFrank, T., Stintzing, F.C., Carle, R., Bitsch, I., Quaas, D., Strass, G., Bitsch, R., Netzel, M., Urinary Pharmacokinetics of Betalains Following Consumption of Red Beet Juice in Healthy Humans (2005) Pharmacol. Res, 52, pp. 290-297. , 15964200
dc.relation.referencesZabihi, F., Kiani, F., Yaghobi, M., Shahidi, S.-A., The Theoretical Calculations and Experimental Measurements of Acid Dissociation Constants and Thermodynamic Properties of Betanin in Aqueous Solutions at Different Temperatures (2019) J. Solut. Chem, 48, pp. 1438-1460
dc.relation.referencesNilsson, T., Studies into the Pigments in Beetroot (Beta vulgaris L. Ssp. Vulgaris Var (1970) Rubra L.). Lantbrukshogskolans Ann, 36, pp. 179-219
dc.relation.referencesVan Zandt, M.C., Jones, M.L., Gunn, D.E., Geraci, L.S., Jones, J.H., Sawicki, D.R., Sredy, J., Petrova, T., Discovery of 3-[(4,5,7-Trifluorobenzothiazol-2-Yl)Methyl]Indole- N -Acetic Acid (Lidorestat) and Congeners as Highly Potent and Selective Inhibitors of Aldose Reductase for Treatment of Chronic Diabetic Complications (2005) J. Med. Chem, 48, pp. 3141-3152
dc.relation.referencesZheng, X., Zhang, L., Zhai, J., Chen, Y., Luo, H., Hu, X., The Molecular Basis for Inhibition of Sulindac and Its Metabolites towards Human Aldose Reductase (2012) FEBS Lett, 586, pp. 55-59
dc.relation.referencesJagdale, A., Kamble, S., Nalawade, M., Arvindekar, A., Citronellol: A Potential Antioxidant and Aldose Reductase Inhibitor from Cymbopogon Citratus (2015) Int. J. Pharm. Pharm. Sci, 7, pp. 203-209
dc.relation.referencesR: A Language and Environment for Statistical Computing (2014) MSOR Connect, p. 1. , https://www.r-project.org, Available online
dc.relation.referencesKucerova-Chlupacova, M., Dosedel, M., Kunes, J., Soltesova-Prnova, M., Majekova, M., Stefek, M., Chalcones and Their Pyrazine Analogs: Synthesis, Inhibition of Aldose Reductase, Antioxidant Activity, and Molecular Docking Study (2018) Monatshefte Für Chem. Chem. Mon, 149, pp. 921-929
dc.relation.referencesHoward, E.I., Sanishvili, R., Cachau, R.E., Mitschler, A., Chevrier, B., Barth, P., Lamour, V., Bon, C., Ultrahigh Resolution Drug Design I: Details of Interactions in Human Aldose Reductase-Inhibitor Complex at 0.66 A (2004) Proteins, 55, pp. 792-804
dc.relation.referencesUrzhumtsev, A., Favier, F., Mitschler, A., Barbanton, J., Barth, P., Urzhumtseva, L., Biellmann, J., Moras, D., A “specificity” Pocket Inferred from the Crystal Structures of the Complexes of Aldose Reductase with the Pharmaceutically Important Inhibitors Tolrestat and Sorbinil (1997) Structure, 5, pp. 601-612
dc.relation.referencesWilson, D.K., Bohren, K.M., Gabbay, K.H., Quiocho, F.A., An Unlikely Sugar Substrate Site in the 1.65 Å Structure of the Human Aldose Reductase Holoenzyme Implicated in Diabetic Complications (1992) Science, 257, pp. 81-84
dc.relation.referencesHarrison, D.H., Bohren, K.M., Ringe, D., Petsko, G.A., Gabbay, K.H., An Anion Binding Site in Human Aldose Reductase: Mechanistic Implications for the Binding of Citrate, Cacodylate, and Glucose 6-Phosphate (1994) Biochemistry, 33, pp. 2011-2020
dc.relation.referencesRamírez-Velásquez, I., Bedoya-Calle, Á.H., Vélez, E., Caro-Lopera, F.J., Shape Theory Applied to Molecular Docking and Automatic Localization of Ligand Binding Pockets in Large Proteins (2022) ACS Omega, 7, pp. 45991-46002
dc.relation.referencesHannachi, D., Amrane, N.E.H., Merzoud, L., Chermette, H., Exploring the Antioxidant Activity of Thiaflavan Compounds: A Quantum Chemical Study (2021) New J. Chem, 45, pp. 13451-13462
dc.relation.referencesJameel, M., Ikram, H., Azhar, M., Bano, K., Conformational Analysis and Geometry Optimization of Buspirone-A 5-HT1A Receptor Agonist (2014) Pak. J. Pharm. Sci, 27, pp. 1515-1522
dc.relation.referencesFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Nakatsuji, H., Gaussian 09. Gaussian, , https://gaussian.com/g09citation/, Available online
dc.relation.referencesMarenich, A.V., Cramer, C.J., Truhlar, D.G., Performance of SM6, SM8, and SMD on the SAMPL1 Test Set for the Prediction of Small-Molecule Solvation Free Energies (2009) J. Phys. Chem. B, 113, pp. 4538-4543. , 19253989
dc.relation.referencesIsse, A.A., Gennaro, A., Absolute Potential of the Standard Hydrogen Electrode and the Problem of Interconversion of Potentials in Different Solvents (2010) J. Phys. Chem. B, 114, pp. 7894-7899
dc.relation.referencesTrott, O., Olson, A.J., AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading (2010) J. Comput. Chem, 31, pp. 455-461
dc.relation.referencesGhamali, M., Chtita, S., Hmamouchi, R., Adad, A., Bouachrine, M., Lakhlifi, T., The Inhibitory Activity of Aldose Reductase of Flavonoid Compounds: Combining DFT and QSAR Calculations (2016) J. Taibah Univ. Sci, 10, pp. 534-542
dc.relation.referencesHumphrey, W., Dalke, A., Schulten, K., VMD: Visual Molecular Dynamics (1996) J. Mol. Graph, 14
dc.relation.referencesSystèmes, D., Free Download: BIOVIA Discovery Studio Visualizer, , https://discover.3ds.com/discovery-studio-visualizer-download, Available online
dc.relation.referencesPhillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Schulten, K., Scalable Molecular Dynamics with NAMD (2005) J. Comput. Chem, 26, pp. 1781-1802
dc.relation.referencesJo, S., Kim, T., Iyer, V.G., Im, W., CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM (2008) J. Comput. Chem, 29, pp. 1859-1865. , 18351591
dc.relation.referencesHuang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B.L., Grubmüller, H., MacKerell, A.D., CHARMM36m: An Improved Force Field for Folded and Intrinsically Disordered Proteins (2017) Nat. Methods, 14, pp. 71-73
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record