Mostrar el registro sencillo del ítem

dc.contributor.authorQuevedo-Ospina C
dc.contributor.authorArroyave C
dc.contributor.authorPeñuela-Vásquez M
dc.contributor.authorVillegas A.
dc.date.accessioned2023-10-24T19:24:01Z
dc.date.available2023-10-24T19:24:01Z
dc.date.created2023
dc.identifier.issn0166445X
dc.identifier.urihttp://hdl.handle.net/11407/7907
dc.description.abstractAnthropogenic activities such as mining and the metallurgical industry are the main sources of mercury contamination. Mercury is one of the most serious environmental problems in the world. This study aimed to investigate, using experimental kinetic data, the effect of different inorganic mercury (Hg2+) concentrations on the response of microalga Desmodesmus armatus stress. Cell growth, nutrients uptake and mercury ions from the extracellular medium, and oxygen production were determined. A Compartment Structured Model allowed elucidating the phenomena of transmembrane transport, including influx and efflux of nutrients, metal ions and bioadsorption of metal ions on the cell wall, which are difficult to determine experimentally. This model was able to explain two tolerance mechanisms against mercury, the first one was the adsorption of Hg2+ions onto the cell wall and the second was the efflux of mercury ions. The model predicted a competition between internalization and adsorption with a maximum tolerable concentration of 5.29 mg/L of HgCl2. The kinetic data and the model showed that mercury causes physiological changes in the cell, which allow the microalga to adapt to these new conditions to counteract the toxic effects. For this reason, D. armatus can be considered as a Hg-tolerant microalga. This tolerance capacity is associated with the activation of the efflux as a detoxification mechanism that facilitates the maintenance of the osmotic balance for all the modeled chemical species. Furthermore, the accumulation of mercury in the cell membrane suggests the presence of thiol groups associated with its internalization, leading to the conclusion that metabolically active tolerance mechanisms are dominant over passive ones. © 2023eng
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85150279497&doi=10.1016%2fj.aquatox.2023.106496&partnerID=40&md5=71086dc2693c6932f86d1b63e2d95d6a
dc.sourceAquat. Toxicol.
dc.sourceAquatic Toxicologyeng
dc.subjectAdsorptioneng
dc.subjectDesmodesmus armatuseng
dc.subjectEffluxeng
dc.subjectMicroalgaeng
dc.subjectStructured modeleng
dc.subjectTolerance mechanismseng
dc.titleEffect of mercury in the influx and efflux of nutrients in the microalga Desmodesmus armatuseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.type.spaArtículo
dc.identifier.doi10.1016/j.aquatox.2023.106496
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationQuevedo-Ospina, C., Bioprocess Research Group, Department of Chemical Engineering, Faculty of Engineering, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 050010, Colombia
dc.affiliationArroyave, C., GRINBIO Research Group, Department of Environmental Engineering, Universidad de Medellín UdeM, Carrera 87 #30-65, Medellín, 050026, Colombia
dc.affiliationPeñuela-Vásquez, M., Bioprocess Research Group, Department of Chemical Engineering, Faculty of Engineering, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 050010, Colombia
dc.affiliationVillegas, A., TERMOMEC Research Group, Faculty of Engineering, Universidad Cooperativa de Colombia UCC, Medellín, 050012, Colombia
dc.relation.referencesBalzano, S., Sardo, A., Blasio, M., Chahine, T.B., Dell'Anno, F., Sansone, C., Brunet, C., Microalgal metallothioneins and phytochelatins and their potential use in bioremediation (2020) Front. Microbiol., 11, pp. 1-16
dc.relation.referencesBarón-Sola, Á., Toledo-Basantes, M., Arana-Gandía, M., Martínez, F., Ortega-Villasante, C., Dučić, T., Yousef, I., Hernández, L.E., Synchrotron radiation-fourier transformed infrared microspectroscopy (μSR-FTIR) reveals multiple metabolism alterations in microalgae induced by cadmium and mercury (2021) J. Hazard. Mater., 419
dc.relation.referencesBeauvais-Flück, R., Slaveykova, V.I., Cosio, C., Molecular effects of inorganic and methyl mercury in aquatic primary producers: comparing impact to a macrophyte and a green microalga in controlled conditions (2018) Geosciences, 8
dc.relation.referencesBeauvais-Flück, R., Slaveykova, V.I., Cosio, C., Cellular toxicity pathways of inorganic and methyl mercury in the green microalga Chlamydomonas reinhardtii (2017) Sci. Rep., 7, pp. 1-12
dc.relation.referencesBeauvais-Flück, R., Slaveykova, V.I., Cosio, C., Transcriptomic and physiological responses of the green microalga chlamydomonas reinhardtii during short-term exposure to subnanomolar methylmercury concentrations (2016) Environ. Sci. Technol., 50, pp. 7126-7134
dc.relation.referencesBlaby-Haas, C.E., Merchant, S.S., The ins and outs of algal metal transport (2012) Biochim. Biophys. Acta Mol. Cell Res., 1823, pp. 1531-1552
dc.relation.referencesBorowitzka, M.A., Beardall, J., Raven, J.A., The Physiology of Microalgae (2016), 1st ed. Springer International Publishing Cham Switzerland ed
dc.relation.referencesBrun, R., Reichert, P., Künsch, H.R., Practical identifiability analysis of large environmental simulation models (2001) Water Resour. Res., 37, pp. 1015-1030
dc.relation.referencesCapolino, E., Tredici, M., Pepi, M., Baldi, F., Tolerance to mercury chloride in Scenedesmus strains (1997) BioMetals, 10, pp. 85-94
dc.relation.referencesChung, T.Y., Kuo, C.Y., Lin, W.J., Wang, W.L., Chou, J.Y., Indole-3-acetic-acid-induced phenotypic plasticity in Desmodesmus algae (2018) Sci. Rep., 8, pp. 1-13
dc.relation.referencesCossart, T., Garcia-Calleja, J., Santos, J.P., Kalahroodi, E.L., Worms, I.A.M., Pedrero, Z., Amouroux, D., Slaveykova, V.I., Role of phytoplankton in aquatic mercury speciation and transformations (2022) Environ. Chem., 19, pp. 104-115
dc.relation.referencesdo Nascimento, F.H., Rigobello-Masini, M., Domingos, R.F., Pinheiro, J.P., Masini, J.C., Dynamic interactions of Hg(II) with the surface of green microalgae Chlamydomonas reinhardtii studied by stripping chronopotentiometry (2017) Algal Res., 24, pp. 347-353
dc.relation.referencesDuval, J.F.L., Dynamics of metal uptake by charged biointerphases: bioavailability and bulk depletion (2013) Phys. Chem. Chem. Phys., 15, pp. 7873-7888
dc.relation.referencesDuval, J.F.L., Paquet, N., Lavoie, M., Fortin, C., Dynamics of metal partitioning at the cell-solution interface: implications for toxicity assessment under growth-inhibiting conditions (2015) Environ. Sci. Technol., 49, pp. 6625-6636
dc.relation.referencesDuval, J.F.L., Rotureau, E., Dynamics of metal uptake by charged soft biointerphases: impacts of depletion, internalisation, adsorption and excretion (2014) Phys. Chem. Chem. Phys., 16, pp. 7401-7416
dc.relation.referencesFawzy, M.A., Hifney, A.F., Adam, M.S., Al-Badaani, A.A., Biosorption of cobalt and its effect on growth and metabolites of Synechocystis pevalekii and Scenedesmus bernardii: isothermal analysis (2020) Environ. Technol. Innov., 19
dc.relation.referencesFuruhashi, K., Saga, K., Okada, S., Imou, K., Seawater-cultured botryococcus braunii for efficient hydrocarbon extraction (2013) PLoS ONE, 8, p. e66483
dc.relation.referencesGalceran, J., Monné, J., Puy, J., Van Leeuwen, H.P., Transient biouptake flux and accumulation by microorganisms: the case of two types of sites with Langmuir adsorption (2006) Mar. Chem., 99, pp. 162-176
dc.relation.referencesGe, Y., Liu, X., Nan, F., Liu, Q., Lv, J., Feng, J., Xie, S., Toxicological effects of mercuric chloride exposure on scenedesmus quadricauda (2022) Water, 14. , (Switzerland)
dc.relation.referencesHajdu, R., Pinheiro, J.P., Galceran, J., Slaveykova, V.I., Modeling of Cd uptake and efflux kinetics in metal-resistant bacterium cupriavidus metallidurans (2010) Environ. Sci. Technol., 44, pp. 4597-4602
dc.relation.referencesHussain, F., Eom, H., Ali Toor, U., Lee, C.S., Oh, S.E., Rapid assessment of heavy metal-induced toxicity in water using micro-algal bioassay based on photosynthetic oxygen evolution (2020) Environ. Eng. Res., 26. , 200391–0
dc.relation.referencesIbuot, A., Dean, A.P., Pittman, J.K., Multi-genomic analysis of the cation diffusion facilitator transporters from algae (2020) Metallomics, 12, pp. 617-630
dc.relation.referencesLeón-Vaz, A., Romero, L.C., Gotor, C., León, R., Vigara, J., Effect of cadmium in the microalga Chlorella sorokiniana: a proteomic study (2021) Ecotoxicol. Environ. Saf., 207
dc.relation.referencesLi, Y.Y., Li, D., Song, B., Li, Y.Y., The potential of mercury methylation and demethylation by 15 species of marine microalgae (2022) Water Res., 215
dc.relation.referencesLiu, M., Zhang, Q., Maavara, T., Liu, S., Wang, X., Raymond, P.A., Rivers as the largest source of mercury to coastal oceans worldwide (2021) Nat. Geosci., 14, pp. 672-677
dc.relation.referencesMa, J.F., Ryan, P.R., Delhaize, E., Aluminium tolerance in plants and the complexing role of organic acids (2001) Trends Plant Sci., 6, pp. 273-278
dc.relation.referencesPalomino, F., Asistente, P., Rojas, M., Ocasional, D., Nueva técnica colorimétrica para la determinación de nitratos en el plasma (1997) Rev. Fac. Med. Univ. Nac. Colomb., 45 (2), pp. 63-69
dc.relation.referencesPiotrowska-Niczyporuk, A., Bajguz, A., Zambrzycka-Szelewa, E., Response and the detoxification strategies of green alga Acutodesmus obliquus (Chlorophyceae) under lead stress (2017) Environ. Exp. Bot., 144, pp. 25-36
dc.relation.referencesPokora, W., Baścik-Remisiewicz, A., Tukaj, S., Kalinowska, R., Pawlik-Skowrońska, B., Dziadziuszko, M., Tukaj, Z., Adaptation strategies of two closely related Desmodesmus armatus (green alga) strains contained different amounts of cadmium: a study with light-induced synchronized cultures of algae (2014) J. Plant Physiol., 171, pp. 69-77
dc.relation.referencesPradhan, B., Bhuyan, P.P., Nayak, R., Patra, S., Behera, C., Ki, J., Ragusa, A., Jena, M., Microalgal phycoremediation: a glimpse into a sustainable environment (2022) Toxics, 10, pp. 1-16
dc.relation.referencesPrésent, R.M., Rotureau, E., Billard, P., Pagnout, C., Sohm, B., Flayac, J., Gley, R., Duval, J.F.L., Impact of intracellular metallothionein on metal biouptake and partitioning dynamics at bacterial interfaces (2017) Phys. Chem. Chem. Phys., 19, pp. 29114-29124
dc.relation.referencesPriyadarshanee, M., Chatterjee, S., Rath, S., Dash, H.R., Das, S., Cellular and genetic mechanism of bacterial mercury resistance and their role in biogeochemistry and bioremediation (2022) J. Hazard. Mater., 423
dc.relation.referencesRoger, B., Bridgewater, L., Standard Methods for the Examination of Water and Wastewater (2017), 23rd ed. American Public Health Association (APHA) Washington, D.C
dc.relation.referencesRotureau, E., Billard, P., Duval, J.F.L., Evaluation of metal biouptake from the analysis of bulk metal depletion kinetics at various cell concentrations: theory and application (2015) Environ. Sci. Technol., 49, pp. 990-998
dc.relation.referencesSpain, O., Plöhn, M., Funk, C., The cell wall of green microalgae and its role in heavy metal removal (2021) Physiol. Plant., 173, pp. 526-535
dc.relation.referencesTijani, H., Yuzir, A., Dagang, W.R.Z.W., Zamyadi, A., Abdullah, N., Multi-parametric modelling and kinetic sensitivity of microalgal cells (2018) Algal Res., 32, pp. 259-269
dc.relation.referencesTramontin, D.P., Gressler, P.D., Rörig, L.R., Derner, R.B., Pereira-Filho, J., Radetski, C.M., Quadri, M.B., Growth modeling of the green microalga Scenedesmus obliquus in a hybrid photobioreactor as a practical tool to understand both physical and biochemical phenomena in play during algae cultivation (2018) Biotechnol. Bioeng., 115, pp. 965-977
dc.relation.referencesTripathi, S., Poluri, K.M., Heavy metal detoxification mechanisms by microalgae: insights from transcriptomics analysis (2021) Environ. Pollut., 285
dc.relation.referencesUmetani, I., Janka, E., Sposób, M., Hulatt, C.J., Kleiven, S., Bakke, R., Bicarbonate for microalgae cultivation: a case study in a chlorophyte, Tetradesmus wisconsinensis isolated from a Norwegian lake (2021) J. Appl. Phycol., 33, pp. 1341-1352
dc.relation.referencesVendruscolo, R.G., Fagundes, M.B., Maroneze, M.M., do Nascimento, T.C., de Menezes, C.R., Barin, J.S., Zepka, L.Q., Wagner, R., Scenedesmus obliquus metabolomics: effect of photoperiods and cell growth phases (2019) Bioprocess Biosyst. Eng., 42, pp. 727-739
dc.relation.referencesVillegas, A., Arias, J.P., Aragón, D., Ochoa, S., Arias, M., Arag�n, D., Ochoa, S., Arias, M., Structured model and parameter estimation in plant cell cultures of Thevetia peruviana (2017) Bioprocess Biosyst. Eng., 40, pp. 573-587
dc.relation.referencesYan, A., Wang, Y., Tan, S.N., Yusof, M.L.M., Gosh, S., Chen, Z., Phytoremediation : a promising approach for revegetation of heavy-polluted land (2020) Front. Plant Sci., 11, pp. 1-15
dc.relation.referencesYao, K.Z., Shaw, B.M., Kou, B., McAuley, K.B., Bacon, D.W., Modeling ethylene/butene copolymerization with multi-site catalysts: parameter estimability and experimental design (2003) Polym. React. Eng., 11, pp. 563-588
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem