Mostrar el registro sencillo del ítem

dc.contributor.authorTiutiunnyk A
dc.contributor.authorLaroze D
dc.contributor.authorCorrea J.D
dc.contributor.authorMora-Ramos M.E.
dc.date.accessioned2023-10-24T19:24:02Z
dc.date.available2023-10-24T19:24:02Z
dc.date.created2023
dc.identifier.issn9259635
dc.identifier.urihttp://hdl.handle.net/11407/7908
dc.description.abstractThe electronic properties of vertically coupled stacked graphene quantum dots (GQDs) of triangular shape are investigated using density functional theory, including the influence of applied electric field. Both bilayer and trilayer configurations with different sizes are considered, and quantum dot edges are assumed to be passivated with hydrogen atoms. The electric field has, indeed, an effect on the relative positions of atoms in the layers and also on the inter-layer distances, although it is very slight, just reaching up to half an Angstrom. Electronic states in the dots are not largely affected by the electric field in the case of AA and AAA stacks, but significant variations are induced by it in the case of AB and ABA structures, mainly in the states with energies in the vicinity if the Fermi level. Magnetic features are reported for zigzag structures via the calculation of total spin moment. No magnetic response associated with spin is present on the case of AA bilayer GQDs, whereas zigzag-edged trilayer ABA and AAA, and bilayer AB structures show a net magnetic polarization. In trilayer GQDs, the magnetization is significantly reduced as a result of the increment in electric field intensity, independently of the size. In contrast, for bilayer AB structures, total spin moment is only very slightly affected by the applied field. © 2022 Elsevier B.V.eng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85146250191&doi=10.1016%2fj.diamond.2022.109550&partnerID=40&md5=934473d2512665301afd0baded3f9f0c
dc.sourceDiamond Relat. Mat.
dc.sourceDiamond and Related Materialseng
dc.subjectDFTeng
dc.subjectElectric fieldeng
dc.subjectElectronic propertieseng
dc.subjectMagnetic propertieseng
dc.subjectStacked graphene quantum dotseng
dc.subjectStructural propertieseng
dc.titleElectronic and magnetic properties of stacked graphene quantum dotseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1016/j.diamond.2022.109550
dc.relation.citationvolume131
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationTiutiunnyk, A., Departamento de Física, FACI, Universidad de Tarapacá, Casilla 7D, Arica, Chile
dc.affiliationLaroze, D., Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7D, Arica, Chile
dc.affiliationCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationMora-Ramos, M.E., Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Morelos, Cuernavaca, CP 62209, Mexico
dc.relation.referencesGeim, A.K., Graphene: status and prospects (2009) Science, 324, pp. 1530-1534
dc.relation.referencesCastro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K., The electronic properties of graphene (2009) Rev. Mod. Phys., 81, pp. 109-162
dc.relation.referencesWu, Y.H., Yu, T., Shen, Z.X., Two-dimensional carbon nanostructures: fundamental properties, synthesis, characterization, and potential applications (2010) J. Appl. Phys., 108
dc.relation.referencesShen, J., Zhu, Y., Yang, X., Li, C., Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices (2012) Chem. Commun., 48, p. 3686
dc.relation.referencesSun, H., Wu, L., Wei, W., Qu, X., Recent advances in graphene quantum dots for sensing (2013) Mater. Today, 16 (11), pp. 433-442
dc.relation.referencesBacon, M., Bradley, S.J., Nann, T., Graphene quantum dots (2014) Part. Part. Syst. Charact., 31 (4), pp. 415-428
dc.relation.referencesBak, S., Kim, D., Lee, H., Graphene quantum dots and their possible energy applications: a review (2016) Curr. Appl. Phys., 16, pp. 1192-1201
dc.relation.referencesChen, W., Lv, G., Hu, W., Li, D., Chen, S., Dai, Z., Synthesis and applications of graphene quantum dots: a review (2018) Nanotechnol. Rev., 7 (2), pp. 157-185
dc.relation.referencesKalluri, A., Debnath, D., Dharmadhikari, B., Patra, P., Graphene quantum dots: synthesis and applications (2018) Enzyme Nanoarchitectures: Enzymes Armored with Graphene, 609, pp. 335-354. , https://www.sciencedirect.com/science/article/pii/S0076687918302490, of Methods in Enzymology C.V. Kumar Academic Press
dc.relation.referencesTian, P., Tang, L., Teng, K., Lau, S., Graphene quantum dots from chemistry to applications, materials today (2018) Chemistry, 10, pp. 221-258
dc.relation.referencesManikandan, A., Chen, Y.-Z., Shen, C.-C., Sher, C.-W., Kuo, H.-C., Chueh, Y.-L., A critical review on two-dimensional quantum dots (2d qds): from synthesis toward applications in energy and optoelectronics (2019) Prog. Quantum Electron., 68
dc.relation.referencesFacure, M.H.M., Schneider, R., Mercante, L.A., Correa, D.S., A review on graphene quantum dots and their nanocomposites: from laboratory synthesis towards agricultural and environmental applications (2020) environSci. Nano, 7, pp. 3710-3734
dc.relation.referencesPierrat, P., Gaumet, J.-J., Graphene quantum dots: emerging organic materials with remarkable and tunable luminescence features (2020) Tetrahedron Lett., 61 (49)
dc.relation.referencesYounis, M.R., He, G., Lin, J., Huang, P., Recent advances on graphene quantum dots for bioimaging applications (2020) Front. Chem., 8, p. 424
dc.relation.referencesChung, S., Revia, R.A., Zhang, M., Graphene quantum dots and their applications in bioimaging, biosensing, and therapy (2021) Advanced Materials, 33 (22), p. 1904362
dc.relation.referencesDu, Z., Shen, S.L., Tang, Z.H., Yang, J.H., Graphene quantum dots-based heterogeneous catalysts (2021) New Carbon Mater., 36 (3), pp. 449-467. , https://www.sciencedirect.com/science/article/pii/S1872580521600367
dc.relation.referencesGhosh, D., Sarkar, K., Devi, P., Kim, K.-H., Kumar, P., Current and future perspectives of carbon and graphene quantum dots: from synthesis to strategy for building optoelectronic and energy devices (2021) Renew. Sust. Energ. Rev., 135
dc.relation.referencesIqbal, T., Fatima, S., Bibi, T., Zafar, M., Graphene and other two-dimensional materials in advance solar cells (2021) Opt. Quant. Electron., 53, p. 228
dc.relation.referencesPrabhu, S.A., Kavithayeni, V., Suganthy, R., Geetha, K., Graphene quantum dots synthesis and energy application: a review (2021) Carbon Lett., 31 (1), pp. 1-12
dc.relation.referencesRoy, E., Nagar, A., Sharma, A., Roy, S., Pal, S., Graphene quantum dots and its modified application for energy storage and conversion (2021) J. Energy Storage, 39. , https://www.sciencedirect.com/science/article/pii/S2352152X21003480
dc.relation.referencesLi, L., Wu, G., Yang, G., Peng, J., Zhao, J., Zhu, J.-J., Focusing on luminescent graphene quantum dots: current status and future perspectives (2013) Nanoscale, 5, p. 4015
dc.relation.referencesQi, B.-P., Hu, H., Bao, L., Zhang, Z.-L., Tang, B., Peng, Y., Wang, B.-S., Pang, D.-W., An efficient edge-functionalization method to tune the photoluminescence of graphene quantum dots (2015) Nanoscale, 7, pp. 5969-5973
dc.relation.referencesChiu, K.L., Connolly, M.R., Cresti, A., Griffiths, J.P., Jones, G.A.C., Smith, C.G., Magnetic-field-induced charge redistribution in disordered graphene double quantum dots (2015) Phys. Rev. B, 92
dc.relation.referencesYamijala, S.S., Bandyopadhyay, A., Pati, S.K., Nitrogen-doped graphene quantum dots as possible substrates to stabilize planar conformer of au20 over its tetrahedral conformer: a systematic DFT study (2014) J. Phys. Chem. C, 118, pp. 17890-17894
dc.relation.referencesZhao, M., Yang, F., Xue, Y., Xiao, D., Guo, Y., Effects of edge oxidation on the stability and half-metallicity of graphene quantum dots (2013) ChemPhysChem, 15, pp. 157-164
dc.relation.referencesKittiratanawasin, L., Hannongbua, S., The effect of edges and shapes on band gap energy in graphene quantum dots (2016) Integr. Ferroelectr., 175, pp. 211-219
dc.relation.referencesDas, R., Dhar, N., Bandyopadhyay, A., Jana, D., Size dependent magnetic and optical properties in diamond shaped graphene quantum dots: a DFT study (2016) J. Phys. Chem. Solids, 99, pp. 34-42
dc.relation.referencesZarenia, M., Chaves, A., Farias, G.A., Peeters, F.M., Energy levels of triangular and hexagonal graphene quantum dots: a comparative study between the tight-binding and dirac equation approach (2011) Phys. Rev. B, 84
dc.relation.referencesBasak, T., Basak, T., Electro-absorption spectra of magnetic states of diamond shaped graphene quantum dots (2020) Mater. Today Proc., 26, pp. 2058-2061
dc.relation.referencesBasak, T., Basak, T., Characterization of magnetic states of graphene quantum dots of different shapes by application of electric field (2020) Mater. Today Proc., 26, pp. 2069-2072
dc.relation.referencesDong, Q., Electrical spin switch in a two-electron triangular graphene quantum dot (2020) Physica E, 116
dc.relation.referencesZhou, J., Li, H., Yang, Z., Zhang, Z., Shen, X., Han, K., Second hyperpolarizability of hexagonal graphene quantum dots: effects of size and structural defects (2021) Carbon Trends, 4
dc.relation.referencesLu, J., Yeo, P.S.E., Gan, C.K., Wu, P., Loh, K.P., Transforming c60 molecules into graphene quantum dots (2011) Nat. Nanotechnol., 6 (4), pp. 247-252
dc.relation.referencesBugajny, P., Szulakowska, L., Jaworowski, B., Potasz, P., Optical properties of geometrically optimized graphene quantum dots (2017) Physica E, 85, pp. 294-301
dc.relation.referencesLiang, F.X., Jiang, Z.T., Lv, Z.T., Zhang, H.Y., Li, S., Energy levels of double triangular graphene quantum dots (2014) J. Appl. Phys., 116
dc.relation.referencesBasak, T., Chakraborty, H., Shukla, A., Theory of linear optical absorption in diamond-shaped graphene quantum dots (2015) Phys. Rev. B, 92
dc.relation.referencesDong, Q.-R., Liu, C.-X., The optical selection rules of a graphene quantum dot in external electric fields (2017) RSC Adv., 7, pp. 22771-22776
dc.relation.referencesElvati, P., Baumeister, E., Violi, A., Graphene quantum dots: effect of size, composition and curvature on their assembly (2017) RSC Adv., 7, pp. 17704-17710
dc.relation.referencesFeng, J., Dong, H., Yu, L., Dong, L., The optical and electronic properties of graphene quantum dots with oxygen-containing groups: a density functional theory study (2017) J. Mater. Chem. C, 5, pp. 5984-5993
dc.relation.referencesGao, F., Yang, C.-L., Wang, M.-S., Ma, X.-G., Computational studies on the absorption enhancement of nanocomposites of tetraphenylporphyrin and graphene quantum dot as sensitizers in solar cell (2017) J. Mater. Sci., 53 (7), pp. 5140-5150
dc.relation.referencesDong, Q., Jiang, F., Lian, S., Liu, C., Electric-field control of the degenerate shell in a triangular graphene quantum dot (2019) J. Magn. Magn. Mater., 476, pp. 225-228
dc.relation.referencesSerrano Orozco, F.A., Avalos Ochoa, J.G., Rivas, X.C., Cuevas Figueroa, J.L., Carrada, H.M.M., Enhancing the energy spectrum of graphene quantum dot with external magnetic and aharonov-bohm flux fields (2019) Heliyon, 5 (8)
dc.relation.referencesKul, E.B., Polat, M., Güçlü, A.D., Electronic and magnetic properties of graphene quantum dots with two charged vacancies (2020) Solid State Commun., 322
dc.relation.referencesVu, K.B., Le Phuc Nhi, T., Vu, V.V., Tung Ngo, S., How do magnetic, structural, and electronic criteria of aromaticity relate to homo – lumo gap? An evaluation for graphene quantum dot and its derivatives (2020) Chem. Phys., 539
dc.relation.referencesSchattauer, C., Linhart, L., Fabian, T., Jawecki, T., Auzinger, W., Libisch, F., Graphene quantum dot states near defects (2020) Phys. Rev. B, 102
dc.relation.referencesZhang, F., Zhang, F.-G., Liu, S.-Q., Meng, J., Miao, H.-L., Jiang, W., Magnetic properties of graphene-like quantum dots doped with magnetic ions (2020) Chin. J. Phys., 66, pp. 390-400
dc.relation.referencesOsman, W., Abdelsalam, H., Ali, M., Teleb, N., Yahia, I., Ibrahim, M., Zhang, Q., Electronic and magnetic properties of graphene quantum dots doped with alkali metals (2021) J. Mater. Res. Technol., 11, pp. 1517-1533
dc.relation.referencesLiu, B., Sheng, Y., Huang, S., Guo, Z., Ba, K., Yan, H., Bao, W., Sun, Z., Layer-by-layer ab-stacked bilayer graphene growth through an asymmetric oxygen gateway (2019) Chem. Mater., 31 (16), pp. 6105-6109
dc.relation.referencesSugawara, K., Yamamura, N., Matsuda, K., Norimatsu, W., Kusunoki, M., Sato, T., Takahashi, T., Selective fabrication of free-standing aba and abc trilayer graphene with/without dirac-cone energy bands (2018) NPG Asia Mater., 10 (2), p. e466
dc.relation.referencesHuang, K., Fu, H., Hickey, D.R., Alem, N., Lin, X., Watanabe, K., Taniguchi, T., Zhu, J., Valley isospin controlled fractional quantum hall states in bilayer graphene (2022) Phys. Rev. X, 12
dc.relation.referencesSánchez, M.S., Gómez-Santos, G., Stauber, T., Collective magnetic excitations in aa- and ab-stacked graphene bilayers (2021) Phys. Rev. B, 104
dc.relation.referencesLiang, M., Li, S., Gao, J.-H., Gate-induced half metals in bernal-stacked graphene multilayers (2022) Phys. Rev. B, 105
dc.relation.referencesEich, M., Pisoni, R., Pally, A., Overweg, H., Kurzmann, A., Lee, Y., Rickhaus, P., Ihn, T., Coupled quantum dots in bilayer graphene (2018) Nano Lett., 18, pp. 5042-5048
dc.relation.referencesSuárez Morell, E., Correa, J.D., Vargas, P., Pacheco, M., Barticevic, Z., Flat bands in slightly twisted bilayer graphene: tight-binding calculations (2010) Phys. Rev. B, 82. , https://link.aps.org/doi/10.1103/PhysRevB.82.121407
dc.relation.referencesSboychakov, A.O., Rakhmanov, A.L., Rozhkov, A.V., Nori, F., Electronic spectrum of twisted bilayer graphene (2015) Phys. Rev. B, 92
dc.relation.referencesDai, S., Xiang, Y., Srolovitz, D., Twisted bilayer graphene: Moiré with a twist (2016) Nano Lett., 16, pp. 5923-5927
dc.relation.referencesPatel, H., Havener, R.W., Brown, L., Liang, Y., Yang, L., Park, J., Graham, M.W., Tunable optical excitations in twisted bilayer graphene form strongly bound excitons (2015) Nano Lett., 15, pp. 5932-5937
dc.relation.referencesLiao, L., Wang, H., Peng, H., Yin, J., Koh, A.L., Chen, Y., Xie, Q., Liu, Z., Van hove singularity enhanced photochemical reactivity of twisted bilayer graphene (2015) Nano Lett., 15, pp. 5585-5589
dc.relation.referencesCarr, S., Massatt, D., Fang, S., Cazeaux, P., Luskin, M., Kaxiras, E., Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle (2017) Phys. Rev. B, 95
dc.relation.referencesLi, Y., Eaton, A., Fertig, H.A., Seradjeh, B., Dirac magic and lifshitz transitions in aa-stacked twisted multilayer graphene (2022) Phys. Rev. Lett., 128
dc.relation.referencesHong, S.J., Wang, D., Wulferding, D., Lemmens, P., Haug, R.J., Twisted double abc-stacked trilayer graphene with weak interlayer coupling (2022) Phys. Rev. B, 105
dc.relation.referencesShin, J., Chittari, B.L., Jang, Y., Min, H., Jung, J., Nearly flat bands in twisted triple bilayer graphene (2022) Phys. Rev. B, 105, p. 245124
dc.relation.referencesHoi, B.D., Yarmohammadi, M., The role of electronic dopant on full band in-plane rkky coupling in armchair graphene nanoribbons-magnetic impurity system (2018) J. Magn. Magn. Mater., 454, pp. 362-367. , https://www.sciencedirect.com/science/article/pii/S0304885317334753
dc.relation.referencesDinh Hoi, B., Yarmohammadi, M., Davoudiniya, M., Coherent control of the route of magnetic phases in quasi-1d armchair graphene nanoribbons via doping in the presence of electronic correlations (2018) Solid State Commun., 271, pp. 21-28. , https://www.sciencedirect.com/science/article/pii/S003810981730409X
dc.relation.referencesLe, P.T.T., Davoudiniya, M., Yarmohammadi, M., Interplay of orbital hopping and perpendicular magnetic field in anisotropic phase transitions for bernal bilayer graphene and hexagonal boron-nitride (2019) Phys. Chem. Chem. Phys., 21, pp. 238-245
dc.relation.referencesSun, L., Wang, W., Lv, D., Gao, Z.Y., Li, Q., Li, B.C., Magnetic and thermodynamic behaviors of the graphene-like quantum dots: A Monte Carlo study (2021) Journal of Magnetism and Magnetic Materials, 528, p. 167820
dc.relation.referencesSharifian, M., Hoseini, S., Faizabadi, E., Ground state magnetic properties in aa-stacking bilayer graphene quantum dots using Lieb's theorem (2019) J. Magn. Magn. Mater., 477, pp. 427-433
dc.relation.referencesSoler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method forab initioorder-nmaterials simulation (2002) J. Phys. Condens. Matter, 14 (11), pp. 2745-2779
dc.relation.referencesLarsen, A.H., Mortensen, J.J., Blomqvist, J., Castelli, I.E., Christensen, R., Dułak, M., Friis, J., Jacobsen, K.W., The atomic simulation environment—a python library for working with atoms (2017) J. Phys. Condens. Matter, 29 (27)
dc.relation.referencesGrimme, S., Antony, J., Ehrlich, S., Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu (2010) The Journal of Chemical Physics, 132 (15), p. 154104
dc.relation.referencesDion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I., Van der waals density functional for general geometries (2004) Phys. Rev. Lett., 92
dc.relation.referencesLee, K., Murray, É.D., Kong, L., Lundqvist, B.I., Langreth, D.C., Higher-accuracy van der waals density functional (2010) Phys. Rev. B, 82 (8)
dc.relation.referencesKlimeš, J., Bowler, D.R., Michaelides, A., Chemical accuracy for the van der Waals density functional (2009) J. Phys. Condens. Matter, 22 (2)
dc.relation.referencesTiutiunnyk, A., Duque, C., Caro-Lopera, F., Mora-Ramos, M., Correa, J., Opto-electronic properties of twisted bilayer graphene quantum dots (2019) Physica E, 112, pp. 36-48. , https://www.sciencedirect.com/science/article/pii/S1386947719301821
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem