Mostrar el registro sencillo del ítem

dc.contributor.authorKoverga A.A
dc.contributor.authorFlórez E
dc.contributor.authorGómez–Marín A.M.
dc.date.accessioned2023-10-24T19:24:02Z
dc.date.available2023-10-24T19:24:02Z
dc.date.created2023
dc.identifier.issn1694332
dc.identifier.urihttp://hdl.handle.net/11407/7909
dc.description.abstractChemical modification of catalytic surfaces by adatoms adsorption is one of the most common methods for designing new (electro)catalytic materials. In this work, the interaction of single bismuth and tellurium adatoms with model platinum basal planes has been investigated using density functional theory to explore changes in the electronic properties of these systems. Calculations indicate that both adatoms are stable, and there is a charge transfer from the adsorbate to the surface in all the systems. As the result, the work function of Pt surfaces lowers and a trend: (100) > (110) > (111) emerges, different from (111) > (100) > (110) seen for the pristine planes. Both Bi and Te cause a noticeable shift in the d-band center of the surfaces, indicating a significant impact of these adatoms on Pt catalytic properties, as experimentally reported. For the Bi/Pt(111), the only system for which similar data has been described, results are in good agreement to previous studies. Results allow to gain insights at atomic-level into adatom-induced changes in electronic properties of Pt, which in turn shed light on key factors that control Pt catalytic activity toward model reactions. In this context, it is found that in contrast to the Bi/Pt(111) system, adatom's electronegativity cannot be considered as an effective descriptor for the enhanced activity of other Bi/Pt, or Te/Pt systems for the oxidation of organic molecules. Contrarily, calculated data offer a reasonable explanation for the reported inhibition of the hydrogen evolution reaction on Bi/Pt and Te/Pt surfaces in light of the substrate's adatom-induced strain. © 2022 Elsevier B.V.eng
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85139307297&doi=10.1016%2fj.apsusc.2022.155137&partnerID=40&md5=5c10457eee22a2c1311bdb4f96600280
dc.sourceAppl Surf Sci
dc.sourceApplied Surface Scienceeng
dc.titleElectronic changes at the platinum interface induced by bismuth and tellurium adatom adsorptioneng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1016/j.apsusc.2022.155137
dc.relation.citationvolume608
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationKoverga, A.A., Department of Chemistry, Division of Fundamental Sciences (IEF), Technological Institute of Aeronautics (ITA), São José dos Campos CEP, SP12228-900, Brazil, Facultad de Ciencias Básicas, Grupo de Investigación Mat&mpac, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationFlórez, E., Facultad de Ciencias Básicas, Grupo de Investigación Mat&mpac, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationGómez–Marín, A.M., Department of Chemistry, Division of Fundamental Sciences (IEF), Technological Institute of Aeronautics (ITA), São José dos Campos CEP, SP12228-900, Brazil
dc.relation.referencesWatanabe, M., Horiuchi, M., Motoo, S., Electrocatalysis by ad-atoms (1988) J. Electroanal. Chem. Interfacial Electrochem., 250 (1), pp. 117-125
dc.relation.referencesCampbell, S.A., Parsons, R., Effect of Bi and Sn adatoms on formic acid and methanol oxidation at well-defined platinum surfaces, J. Chem (1992) Soc. Faraday Transactions., 88, pp. 833-841
dc.relation.referencesKwon, Y., Hersbach, T.J.P., Koper, M.T.M., Electro-oxidation of glycerol on platinum modified by adatoms: activity and selectivity effects (2014) Top. Catal., 57 (14-16), pp. 1272-1276
dc.relation.referencesFigueiredo, M.C., Sorsa, O., Doan, N., Pohjalainen, E., Hildebrand, H., Schmuki, P., Wilson, B.P., Kallio, T., Direct alcohol fuel cells: increasing platinum performance by modification with sp-group metals (2015) J. Power Sources., 275, pp. 341-350
dc.relation.referencesCaneppele, G.L., Almeida, T.S., Zanata, C.R., Teixeira-Neto, E., Fernández, P.S., Camara, G.A., Martins, C.A., Exponential improving in the activity of Pt/C nanoparticles towards glycerol electrooxidation by Sb ad-atoms deposition (2017) Appl. Catal. B., 200, pp. 114-120
dc.relation.referencesBoronat-González, A., Herrero, E., Feliu, J.M., Heterogeneous electrocatalysis of formic acid oxidation on platinum single crystal electrodes (2017) Curr. Opin. Electrochem., 4 (1), pp. 26-31
dc.relation.referencesFuruya, N., Motoo, S., The electrochemical behavior of ad-atoms and their effect on hydrogen evolution (1977) J. Electroanal. Chem. Interfacial Electrochem., 78 (2), pp. 243-256
dc.relation.referencesGómez-Marín, A.M., Briega-Martos, V., Feliu, J.M., Structure effects on electrocatalysts. Oxygen reduction on Te-modified Pt(111) surfaces: site-blocking vs electronic effects (2020) J. Chem. Phys., 152
dc.relation.referencesOntaneda, J., Bennett, R.A., Grau-Crespo, R., Electronic structure of Pd multilayers on Re(0001): the role of charge transfer (2015) J. Phys. Chem. C., 119 (41), pp. 23436-23444
dc.relation.referencesTrasatti, S., Work function, electronegativity, and electrochemical behaviour of metals (1972) J. Electroanal. Chem. Interfacial Electrochem., 39 (1), pp. 163-184
dc.relation.referencesKoverga, A.A., Gómez-Marín, A.M., Dorkis, L., Flórez, E., Ticianelli, E.A., Role of transition metals on TM/Mo2C composites: hydrogen evolution activity in mildly acidic and alkaline media (2020) ACS Appl. Mater. Interfaces., 12, pp. 27150-27165
dc.relation.referencesHammer, B., Nørskov, J.K., Electronic factors determining the reactivity of metal surfaces (1995) Surf. Sci., 343 (3), pp. 211-220
dc.relation.referencesNørskov, J.K., Abild-Pedersen, F., Studt, F., Bligaard, T., Density functional theory in surface chemistry and catalysis (2011) Proc. Natl. Acad. Sci. U.S.A., 108 (3), pp. 937-943
dc.relation.referencesPerales-Rondón, J.V., Solla-Gullón, J., Herrero, E., Sánchez-Sánchez, C.M., Enhanced catalytic activity and stability for the electrooxidation of formic acid on lead modified shape-controlled platinum nanoparticles (2017) Appl. Catal. B., 201, pp. 48-57
dc.relation.referencesLiu, H.-X., Tian, N., Brandon, M.P., Zhou, Z.-Y., Lin, J.-L., Hardacre, C., Lin, W.-F., Sun, S.-G., Tetrahexahedral Pt nanocrystal catalysts decorated with Ru adatoms and their enhanced activity in methanol electrooxidation (2012) ACS Catal., 2, pp. 708-715
dc.relation.referencesLiu, H.-X., Tian, N., Brandon, M.P., Pei, J., Huangfu, Z.-C., Zhan, C., Zhou, Z.-Y., Sun, S.-G., Enhancing the activity and tuning the mechanism of formic acid oxidation at tetrahexahedral Pt nanocrystals by Au decoration (2012) Phys. Chem. Chem. Phys., 14, pp. 16415-16423
dc.relation.referencesChen, Q.-S., Zhou, Z.-Y., Vidal-Iglesias, F.J., Solla-Gullón, J., Feliu, J.M., Sun, S.-G., Significantly enhancing catalytic activity of tetrahexahedral Pt nanocrystals by Bi adatom decoration (2011) J. Amer. Chem. Soc., 133 (33), pp. 12930-12933
dc.relation.referencesPerales-Rondón, J.V., Ferre-Vilaplana, A., Feliu, J.M., Herrero, E., Oxidation mechanism of formic acid on the bismuth adatom-modified Pt(111) surface (2014) J. Amer. Chem. Soc., 136 (38), pp. 13110-13113
dc.relation.referencesSolla-Gullón, J., Vidal-Iglesias, F.J., López-Cudero, A., Garnier, E., Feliu, J.M., Aldaz, A., Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles (2008) Phys. Chem. Chem. Phys., 10, pp. 3689-3698
dc.relation.referencesHerrero, E., Llorca, M.J., Feliu, J.M., Aldaz, A., Oxidation of formic acid on Pt(111) electrodes modified by irreversibly adsorbed tellurium (1995) J. Electroanal. Chem., 394 (1-2), pp. 161-167
dc.relation.referencesClavilier, J., Fernández-Vega, A., Feliu, J.M., Aldaz, A., Heterogeneous electrocatalysis on well-defined Pt surfaces modified by controlled amounts of irreversible adsorbed adatoms: Part I. Formic acid oxidation on the Pt (111)-Bi system (1989) J. Electroanal. Chem., 258, pp. 89-100
dc.relation.referencesClavilier, J., Fernández-Vega, A., Feliu, J.M., Aldaz, A., Heterogeneous electrocatalysis on well-defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms: Part III. Formic acid oxidation on the Pt(100)-Bi system (1989) J. Electroanal. Chem., 261, pp. 113-125
dc.relation.referencesLópez-Cudero, A., Vidal-Iglesias, F.J., Solla-Gullón, J., Herrero, E., Aldaz, A., Feliu, J.M., Formic acid electrooxidation on Bi-modified Pt(110) single crystal electrodes (2009) J. Electroanal. Chem., 637 (1-2), pp. 63-71
dc.relation.referencesHerrero, E., Llorca, M.J., Feliu, J.M., Aldaz, A., Oxidation of formic acid on Pt(100) electrodes modified by irreversibly adsorbed tellurium (1995) J. Electroanal. Chem., 383 (1-2), pp. 145-154
dc.relation.referencesHerrero, E., Rodes, A., Pérez, J.M., Feliu, J.M., Aldaz, A., CO adsorption and oxidation on Pt(111) electrodes modified by irreversibly adsorbed selenium and tellurium (1996) J. Electroanal. Chem., 412 (1-2), pp. 165-174
dc.relation.referencesShibata, M., Takahashi, O., Motoo, M., Electrocatalysis by ad-atoms: Part XXII. Shole control by ad-atoms on HCOOH oxidation (1988) J. Electroanal. Chem., 249, pp. 253-264
dc.relation.referencesShibata, M., Furuya, N., Watanabe, W., Electrocatalysis by ad-atoms: Part XXV. Electrocatalytic effects on the elementary steps in ethanol oxidation by non-oxygen-adsorbing ad-atoms (1989) J. Electroanal. Chem., 267, pp. 163-170
dc.relation.referencesShibata, M., Motoo, S., Electrocatalysis by ad-atoms: Part XXI. Catalytic effects on the elementary steps in methanol oxidation by non-oxygen-adsorbing ad-atoms (1987) J. Electroanal. Chem., 229, pp. 385-394
dc.relation.referencesShibata, M., Motoo, S., Electrocatalysis by ad-atoms: Part XV. Enhancement of CO oxidation on platinum by the electronegativity of ad-atoms (1985) J. Electroanal. Chem., 194, pp. 261-274
dc.relation.referencesGómez, R., Feliu, J.M., Aldaz, A., Effects of irreversibly adsorbed bismuth on hydrogen adsorption and evolution on Pt(111) (1997) Electrochim. Acta., 42 (11), pp. 1675-1683
dc.relation.referencesBoronat-González, A., Herrero, E., Feliu, J.M., Fundamental aspects of HCOOH oxidation at platinum single crystal surfaces with basal orientations and modified by irreversibly adsorbed adatoms (2014) J. Solid State Electrochem., 18 (5), pp. 1181-1193
dc.relation.referencesGomez, R., Fernandez-Vega, A., Feliu, J.M., Aldaz, A., hydrogen evolution on Pt single crystal surfaces. effects of irreversibly adsorbed bismuth and antimony on hydrogen adsorption and evolution on Pt(100) (1993) J. Phys. Chem., 97, pp. 4769-4776
dc.relation.referencesKerbach, I., Climent, V., Feliu, J.M., Reduction of CO2 on bismuth modified Pt(110) single-crystal surfaces. effect of bismuth and poisoning intermediates on the rate of hydrogen evolution (2011) Electrochim. Acta., 56 (12), pp. 4451-4456
dc.relation.referencesGossenberger, F., Roman, T., Forster-Tonigold, K., Groß, A., Change of the work function of platinum electrodes induced by halide adsorption (2014) Beilstein J. Nanotechnol., 5, pp. 152-161
dc.relation.referencesFerre-Vilaplana, A., Perales-Rondón, J.V., Feliu, J.M., Herrero, E., Understanding the effect of the adatoms in the formic acid oxidation mechanism on Pt(111) electrodes (2015) ACS Catal., 5 (2), pp. 645-654
dc.relation.referencesArce, M.D., Quaino, P., Santos, E., Electronic changes at the Pt(111) interface induced by the adsorption of OH species (2013) Catal. Today., 202, pp. 120-127
dc.relation.referencesMalek, A., Eikerling, M.H., Chemisorbed oxygen at Pt(111): a DFT study of structural and electronic surface properties (2018) Electrocatalysis., 9, pp. 370-379
dc.relation.referencesVasić, D.D., Pašti, I.A., Mentus, S.V., DFT study of platinum and palladium overlayers on tungsten carbide: structure and electrocatalytic activity toward hydrogen oxidation/evolution reaction (2013) Int. J. Hydrog. Energy., 38, pp. 5009-5018
dc.relation.referencesNørskov, J.K., Studt, F., Abild-Pedersen, F., Bligaard, T., Fundamental concepts in heterogeneous catalysis (2014), John Wiley and Sons Inc
dc.relation.referencesGorzkowski, M.T., Lewera, A., Probing the Limits of d Band Center Theory: Electronic and Electrocatalytic Properties of Pd-Shell−Pt-Core Nanoparticles (2015) J. Phys. Chem. C, 119, pp. 18389-18395
dc.relation.referencesZheng, X., Li, L.I., Li, J., Wei, Z., Intrinsic effects of strain on low-index surfaces of platinum: roles of the five 5d orbitals (2019) Phys. Chem. Chem. Phys., 21 (6), pp. 3242-3249
dc.relation.referencesDietze, E.M., Grönbeck, H., Structure-dependent strain effects (2020) ChemPhysChem., 21 (21), pp. 2407-2410
dc.relation.referencesAdit Maark, T., Peterson, A.A., Understanding strain and ligand effects in hydrogen evolution over Pd(111) surfaces (2014) J. Phys. Chem. C., 118 (8), pp. 4275-4281
dc.relation.referencesKresse, G., Hafner, J., Ab initio molecular dynamics for liquid metals (1993) Phys. Rev. B., 47 (1), pp. 558-561
dc.relation.referencesKresse, G., Hafner, J., Ab initio molecular dynamics simulation of the liquid metal amorphous semiconductor transition in germanium (1994) Phys. Rev. B., 49 (20), pp. 14251-14269
dc.relation.referencesKresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set (1996) Phys. Rev. B., 54 (16), pp. 11169-11186
dc.relation.referencesKresse, G., Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set (1996) Comput. Mater. Sci., 6 (1), pp. 15-50
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77 (18), pp. 3865-3868
dc.relation.referencesBlöchl, P.E., Projector augmented-wave method (1994) Phys. Rev. B., 50 (24), pp. 17953-17979
dc.relation.referencesKresse, G., Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method (1999) Phys. Rev. B., 59 (3), pp. 1758-1775
dc.relation.referencesMonkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations (1976) Phys. Rev. B., 13 (12), pp. 5188-5192
dc.relation.referencesMethfessel, M., Paxton, A.T., High-precision sampling for Brillouin-zone integration in metals (1989) Phys. Rev. B., 40, pp. 3616-3621
dc.relation.referencesBader, R.F.W., Atoms in molecules: a quantum theory (1990), Oxford University Press Oxford, U.K
dc.relation.referencesHenkelman, G., Arnaldsson, A., Jónsson, H., A fast and robust algorithm for Bader decomposition of charge density (2006) Comput. Mater. Sci., 36 (3), pp. 354-360
dc.relation.referencesKoverga, A.A., Florez, E., Dorkis, L., Rodriguez, J.A., Promoting effect of tungsten carbide on catalytic activity of Cu for CO2 reduction (2020) Phys. Chem. Chem. Phys., 22, pp. 13666-13679
dc.relation.referencesKapur, N., Shan, B., Hyun, J., Wang, L., Yang, S., Nicholas, J.B., Cho, K., First-principles study of CO oxidation on bismuth-promoted Pt(111) surfaces (2011) Mol. Sim., 37 (8), pp. 648-658
dc.relation.referencesPaffett, M.T., Campbell, C.T., Taylor, T.N., Adsorption and growth modes of Bi on Pt(111) (1986) J. Chem. Phys., 85 (10), pp. 6176-6185
dc.relation.referencesKizhakevariam, N., Stuve, E.M., Coadsorption of bismuth with electrocatalytic molecules: a study of formic acid oxidation on Pt(100) (1990) J. Vac. Sci. Tecnol. A., 8 (3), pp. 2557-2562
dc.relation.referencesFeliu, J.M., Gómez, R., Llorca, M.J., Aldaz, A., Electrochemical behavior of irreversible adsorbed tellurium dosed from solution on Pt(hkl) single crystal electrodes in sulphuric and perchloric acid media (1993) Surf. Sci., 297, pp. 209-222
dc.relation.referencesClavilier, J., Feliu, J.M., Aldaz, A., An irreversible structure sensitive adsorption step in bismuth underpotential deposition at platinum electrodes (1988) J. Electroanal. Chem., 243 (2), pp. 419-433
dc.relation.referencesLeiva, E., Iwasita, T., Herrero, E., Feliu, J.M., Effect of adatoms in the electrocatalysis of HCOOH oxidation. a theoretical model (1997) Langmuir, 13 (23), pp. 6287-6293
dc.relation.referencesGodfrey, D.C., Hayden, B.E., Murray, A.J., Parsons, R., Pegg, D.J., Bismuth adsorption on Pt(110) and the coadsorption of carbon monoxide (1993) Surf. Sci., 294 (1-2), pp. 33-42
dc.relation.referencesYan, K., Maark, T.A., Khorshidi, A., Sethuraman, V.A., Peterson, A.A., Guduru, P.R., The influence of elastic strain on catalytic activity in the hydrogen evolution reaction (2016) Angew. Chem., 128 (21), pp. 6283-6289
dc.relation.referencesLeung, T.C., Kao, C.L., Su, W.S., Feng, Y.J., Chan, C.T., Relationship between surface dipole, work function and charge transfer: some exceptions to an established rule (2003) Phys. Rev. B., 68
dc.relation.referencesMichaelson, H.B., The work function of the elements and its periodicity (1977) J. Appl. Phys., 48 (11), pp. 4729-4733
dc.relation.referencesKoverga, A.A., Gómez-Marín, A.M., Flórez, E., Not a mere decoration: Impact of submonolayer coverages of nickel on fundamental properties of platinum (2022) J. Phys. Chem. C, 126, pp. 10167-10180
dc.relation.referencesSchmickler, W., The surface dipole moment of species adsorbed from a solution (1988) J. Electroanal. Chem., 249 (1-2), pp. 25-33
dc.relation.referencesKoverga, A.A., Flórez, E., Jimenez-Orozco, C., Rodriguez, J.A., Not all platinum surfaces are the same: effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction (2021) Electrochim. Acta., 368
dc.relation.referencesMa, H., Wang, G., Morikawa, Y., Nakamura, J., (2009), pp. 1427-1433. , The relationship between formate adsorption energy and electronic properties: a first principles density functional theory study, Sci. China, Ser. B: Chem. 52
dc.relation.referencesDerry, G.N., Kern, M.E., Worth, E.H., Recommended values of clean metal surface work functions (2015) J. Vac. Sci. Technol., 33
dc.relation.referencesSalmerón, M., Ferrer, S., Jazzar, M., Somorjai, G.A., Photoelectron-spectroscopy study of the electronic structure of au and ag overlayers on Pt(100), Pt(111), and Pt(997) surfaces (1983) Phys. Rev. B., 28 (12), pp. 6758-6765
dc.relation.referencesSingh-Miller, N.E., Marzari, N., Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles (2009) Phys. Rev. B., 80
dc.relation.referencesBanholzer, W.F., Park, Y.O., Mak, K.M., Masel, R.I., A Model for the plane to plane variations in catalytic activity seen during nitric oxide decomposition on platinum (1983) Surf. Sci., 128 (1), pp. 176-190
dc.relation.referencesZhang, B., Wang, D., Hou, Y., Yang, S., Yang, X.H., Zhong, J.H., Liu, J., Yang, H.G., Facet-dependent catalytic activity of platinum nanocrystals for triiodide reduction in dye-sensitized solar cells (2013) Sci. Rep., 3, p. 1836
dc.relation.referencesLi, X., Gewirth, A.A., Peroxide electroreduction on Bi-modified Au surfaces: vibrational spectroscopy and density functional calculations (2003) J. Amer. Chem. Soc., 125, pp. 7086-7099
dc.relation.referencesHammer, B., Nielsen, O.H., Nørskov, J.K., Structure sensitivity in adsorption: CO interaction with stepped and reconstructed Pt surfaces (1997) Catal. Lett., 46, pp. 31-35
dc.relation.referencesMun, B.S., Lee, C., Stamenkovic, V., Markovic, N.M., Ross, P.N., A photoemission study of Pd ultrathin films on Pt (111) (2005) J. Chem. Phys., 122
dc.relation.referencesDa Silva, J.L.F., Stampfl, C., Scheffler, M., Converged properties of clean metal surfaces by all-electron first-principles calculations (2006) Surf. Sci., 600 (3), pp. 703-715
dc.relation.referencesWindham, R.G., Koel, B.E., Studies of the ensemble size requirements for ethylene adsorption and decomposition on Pt(111): ethylene and bismuth coadsorption (1988) Langmuir, 4, pp. 1113-1118
dc.relation.referencesCampbell, C.T., Rodriguez, J.A., Henn, F.C., Campbell, J.M., Dalton, P.J., Seimanides, S.G., A new method for analysis of reactive adsorbed intermediates: bismuth postdosing in thermal desorption mass spectroscopy (1988) J. Chem. Phys., 88, pp. 6585-6593
dc.relation.referencesPeng, B., Wang, H.-F., Liu, Z.-P., Cai, W.-B., Combined surface-enhanced infrared spectroscopy and first-principles study on electro-oxidation of formic acid at Sb-modified Pt electrodes (2010) J. Phys. Chem. C., 114 (7), pp. 3102-3107
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem