Mostrar el registro sencillo del ítem

dc.contributor.authorCruz-Pacheco A.F
dc.contributor.authorMonsalve Y
dc.contributor.authorSerrano-Rivero Y
dc.contributor.authorSalazar-Uribe J
dc.contributor.authorMoreno E
dc.contributor.authorOrozco J.
dc.date.accessioned2023-10-24T19:24:02Z
dc.date.available2023-10-24T19:24:02Z
dc.date.created2023
dc.identifier.issn13858947
dc.identifier.urihttp://hdl.handle.net/11407/7911
dc.description.abstractTwo engineered synthetic nanobody-based nanobiocomposite platforms were developed for label-free electrochemical detection of the epithelial growth factor receptor (EGFR) biomarker. Screen-printed carbon electrodes (SPCE) were decorated either with NiO nanoparticles (NPs) or poly(thiophene acetic acid) (PTAA) to link the anti-EGFR nanobody (Nb) and form nanobiocomposites for detecting the EGFR biomarker by electrochemical impedance spectroscopy (EIS). The nanoarchitectures were prepared by in situ electrosynthesis of NiO NPs or PTAA layers at SPCEs. A modified version of the 9G8 Nb (Nb9G8m), specific for the EGFR (anti-EGFR), was designed and produced as the nanobiosensor bioreceptor. This Nb was engineered to provide a hexahistidine tag (6xHis-tag) and a lysine (Lys) dual functionality to form a (6xHis-tag)/Ni2+ or Lys/PTAA interface. The biosensing interfaces were characterized by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, and EIS. The nanobody/nanobiocomposite-based biosensors detected EGFR proteins in a linear range from 0.25 to 50 μg mL−1 and 0.5 to 50 μg mL−1, with limits of detection of 0.46 μg mL−1 and 1.14 μg mL−1, for NiO- and PTAA-based platforms, respectively. The biosensing platforms offer high simplicity, specificity, and selectivity to detect EGFR, but Nbs can be readily engineered to detect other (glycol)proteins. Finally, as a proof of concept, the EGFR was detected in several tumor cell lines, differentiating biomarker expression among them. © 2023 Elsevier B.V.eng
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85153612070&doi=10.1016%2fj.cej.2023.142941&partnerID=40&md5=f6363a1ab1f7ab62de5f0725ef35cd70
dc.sourceChem. Eng. J.
dc.sourceChemical Engineering Journaleng
dc.subjectBiosensoreng
dc.subjectElectrochemical detectioneng
dc.subjectNanobodyeng
dc.subjectScreen-printed electrode bioconjugation chemistryeng
dc.subjectXPS analysiseng
dc.titleEngineered synthetic nanobody-based biosensors for electrochemical detection of epidermal growth factor receptoreng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1016/j.cej.2023.142941
dc.relation.citationvolume465
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationCruz-Pacheco, A.F., Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciencies, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín, 050010, Colombia
dc.affiliationMonsalve, Y., Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciencies, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín, 050010, Colombia
dc.affiliationSerrano-Rivero, Y., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia
dc.affiliationSalazar-Uribe, J., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia
dc.affiliationMoreno, E., Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia
dc.affiliationOrozco, J., Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciencies, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín, 050010, Colombia
dc.relation.referencesHamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hammers, C., Songa, E.B., Bendahman, N., Hammers, R., Naturally occurring antibodies devoid of light chains (1993) Nature., 363, pp. 446-448
dc.relation.referencesLi, B., Qin, X., Mi, L.-Z., Nanobodies: from structure to applications in non-injectable and bispecific biotherapeutic development (2022) Nanoscale., 14, pp. 7110-7122
dc.relation.referencesMuyldermans, S., Nanobodies: Natural single-domain antibodies (2013) Annu. Rev. Biochem., 82, pp. 775-797
dc.relation.referencesValdés-Tresanco, M.S., Molina-Zapata, A., Pose, A.G., Moreno, E., Structural Insights into the Design of Synthetic Nanobody Libraries (2022) Molecules., 27, pp. 1-18
dc.relation.referencesDe Meyer, T., Muyldermans, S., Depicker, A., Nanobody-based products as research and diagnostic tools (2014) Trends Biotechnol., 32, pp. 263-270
dc.relation.referencesZhou, Q., Li, G., Chen, K., Yang, H., Yang, M., Zhang, Y., Wan, Y., Zhang, Y., Simultaneous unlocking optoelectronic and interfacial properties of c60 for ultrasensitive immunosensing by coupling to metal-organic framework (2020) Anal. Chem., 92, pp. 983-990
dc.relation.referencesPan, D., Li, G., Hu, H., Xue, H., Zhang, M., Zhu, M., Gong, X., Shen, Y., Direct Immunoassay for Facile and Sensitive Detection of Small Molecule Aflatoxin B1 based on Nanobody (2018) Chem. - A Eur. J., 24, pp. 9869-9876
dc.relation.referencesZhou, Q., Li, G., Zhang, Y., Zhu, M., Wan, Y., Shen, Y., Highly Selective and Sensitive Electrochemical Immunoassay of Cry1C Using Nanobody and π-π Stacked Graphene Oxide/Thionine Assembly (2016) Anal. Chem., 88, pp. 9830-9836
dc.relation.referencesKovalchuk, B., Berghoff, A.S., Karreman, M.A., Frey, K., Piechutta, M., Fischer, M., Grosch, J., Winkler, F., Nintedanib and a bi-specific anti-VEGF/Ang2 nanobody selectively prevent brain metastases of lung adenocarcinoma cells (2020) Clin. Exp. Metastasis., 37, pp. 637-648
dc.relation.referencesLiu, J., Jiang, Y., Chen, X., Chen, L., Zhang, X., Cui, D., Li, Y., Diao, A., Development of active affibody aggregates induced by a self-assembling peptide for high sensitive detection of alpha-fetoprotein (2022) Chem. Eng. J., 436
dc.relation.referencesSpinelli, S., Frenken, L.G.J., Hermans, P., Verrips, T., Brown, K., Tegoni, M., Cambillau, C., Aiguier, C.J., Camelid Heavy-Chain Variable Domains Provide Efficient Combining Sites to (2000) Biochemistry., 1217-1222
dc.relation.referencesGanji, A., Islami, M., Ejtehadifar, M., Zarei-Mehrvarz, E., Darvish, M., Nanobody and aptamer as targeting moiety against bacterial toxins: Therapeutic and diagnostic applications (2019) Rev. Res. Med. Microbiol., 30, pp. 183-190
dc.relation.referencesAn, N., Hou, Y.N., Zhang, Q.X., Li, T., Zhang, Q.L., Fang, C., Chen, H., Du, X., Anti-Multiple Myeloma Activity of Nanobody-Based Anti-CD38 Chimeric Antigen Receptor T Cells (2018) Mol. Pharm., 15, pp. 4577-4588
dc.relation.referencesShu, M., Xu, Y., Wang, D., Liu, X., Li, Y., He, Q., Tu, Z., Wang, X., Anti-idiotypic nanobody: A strategy for development of sensitive and green immunoassay for Fumonisin B1 (2015) Talanta., 143, pp. 388-393
dc.relation.referencesSchumacher, D., Helma, J., Schneider, A.F.L., Leonhardt, H., Hackenberger, C.P.R., Nanobodies: Chemical Functionalization Strategies and Intracellular Applications (2018) Angew. Chemie - Int. Ed., 57, pp. 2314-2333
dc.relation.referencesWang, L., Ding, Y., Li, N., Chai, Y., Li, Q., Du, Y., Hong, Z., Ou, L., Nanobody-based polyvinyl alcohol beads as antifouling adsorbents for selective removal of tumor necrosis factor-α (2022) Chinese Chem. Lett., 33, pp. 2512-2516
dc.relation.referencesWu, W., Shi, L., Duan, Y., Xu, S., Shen, L., Zhu, T., Hou, L., Liu, B., Nanobody modified high-performance AIE photosensitizer nanoparticles for precise photodynamic oral cancer therapy of patient-derived tumor xenograft (2021) Biomaterials., 274
dc.relation.referencesEcheverri, D., Cruz-Pacheco, A.F., Orozco, J., Capacitive nanobiosensing of β-1,4- galactosyltransferase-V colorectal cancer biomarker (2023) Sensors Actuators: B. Chemical., 374, p. 132784
dc.relation.referencesCajigas, S., Alzate, D., Orozco, J., Gold/DNA-based nanobioconjugate for electrochemical detection of zika virus (2020) Microchimica Acta, 187 (594)
dc.relation.referencesCruz‑Pacheco, A.F., Quinchia, J., Orozco, J., Nanostructured poly(thiophene acetic acid)/Au/poly(methylene blue) interface for electrochemical immunosensing of p53 protein (2023) Sensors Actuators: B. Chemical., 190, p. 136
dc.relation.referencesCruz‑Pacheco, A.F., Quinchia, J., Orozco, J., Cerium oxide-doped PEDOT nanocomposite for label-free electrochemical immunosensing of anti-p53 autoantibodies (2022) Microchimica Acta, 189, p. 228
dc.relation.referencesQuinchia, J., Echeverri, D., Cruz-Pacheco, A.F., Maldonado, M.E., Orozco, J.A., Electrochemical biosensors for determination of colorectal tumor biomarkers (2020) Micromachines., 11, pp. 1-46
dc.relation.referencesMashkoori, A., Mostafavi, A., Shamspur, T., Torkzadeh-Mahani, M., Electrochemical enzyme-based blood uric acid biosensor: new insight into the enzyme immobilization on the surface of electrode via poly-histidine tag (2022) Microchim. Acta., 189
dc.relation.referencesMeyerkord, C.L., Fu, H., (2015), Protein-protein interactions: Methods and applications: Second edition, Protein-Protein Interact. Methods Appl. Second Ed. 1278 1–613. doi: 10.1007/978-1-4939-2425-7
dc.relation.referencesAydemir, N., Malmström, J., Travas-Sejdic, J., Conducting polymer based electrochemical biosensors (2016) Phys. Chem. Chem. Phys., 18, pp. 8264-8277
dc.relation.referencesWee, P., Wang, Z., Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways (2017) Cancers (Basel), pp. 1-45
dc.relation.referencesSaif, M.W., Colorectal cancer in review: The role of the EGFR pathway (2010) Expert Opin. Investig. Drugs., 19, pp. 357-369
dc.relation.referencesGrant, S.L., Hammacher, A., Douglas, A.M., Goss, G.A., Mansfield, R.K., Heath, J.K., Begley, C.G., An unexpected biochemical and functional interaction between gp130 and the EGF receptor family in breast cancer cells (2002) Oncogene., 21, pp. 460-474
dc.relation.referencesFischer, O.M., Hart, S., Gschwind, A., Ullrich, A., EGFR signal transactivation in cancer cells (2003) Biochem. Soc. Trans., 31, pp. 1203-1208
dc.relation.referencesLin, G., Sun, X.J., Han, Q.B., Wang, Z., Xu, Y.P., Gu, J.L., Wu, W., Mao, W.M., Epidermal growth factor receptor protein overexpression and gene amplification are associated with aggressive biological behaviors of esophageal squamous cell carcinoma (2015) Oncol. Lett., 10, pp. 901-906
dc.relation.referencesMcKay, J.A., Murray, L.J., Curran, S., Ross, V.G., Clark, C., Murray, G.I., Cassidy, J., McLeod, H.L., Evaluation of the epidermal growth factor receptor (EGFR) in colorectal tumours and lymph node metastases (2002) Eur. J. Cancer., 38, pp. 2258-2264
dc.relation.referencesRoovers, R.C., Vosjan, M.J.W.D., Laeremans, T., El Khoulati, R., De Bruin, R.C.G., Ferguson, K.M., Verkleij, A.J., P.m.p., Van Bergen En Henegouwen, A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth (2011) Int. J. Cancer., 129, pp. 2013-2024
dc.relation.referencesSchmitz, K.R., Bagchi, A., Roovers, R.C., Van Bergen En, P.M.P., Henegouwen, K.M.F., Structural evaluation of EGFR inhibition mechanisms for nanobodies/VHH domains (2013) Structure., 21, pp. 1214-1224
dc.relation.referencesNoor, A., Walser, G., Wesseling, M., Giron, P., Laffra, A.-M., Haddouchi, F., De Grève, J., Kronenberger, P., Production of a mono-biotinylated EGFR nanobody in the E. coli periplasm using the pET22b vector (2018) BMC Res Notes, 11 (1)
dc.relation.referencesKaczmarek, J.Z., Skottrup, P.D., Selection and characterization of camelid nanobodies towards urokinase-type plasminogen activator (2015) Mol. Immunol., 65, pp. 384-390
dc.relation.referencesGonzález Pose, A., Montesino Seguí, R., Maura Pérez, R., Hugues Salazar, F., Cabezas Ávila, I., Altamirano Gómez, C., Sánchez Ramos, O., Roberto Toledo, J., Characterisation of a new molecule based on two E2 sequences from bovine viral diarrhoea-mucosal disease virus fused to the human immunoglobulin Fc fragment (2021) J Vet. Res., 65, pp. 27-37
dc.relation.referencesZach, M.P., Penner, R.M., Nanocrystalline nickel nanoparticles (2000) Adv. Mater., 12, pp. 878-883
dc.relation.referencesHuang, L.-F., Hutchison, M.J., Santucci, R.J., Scully, J.R., Rondinelli, J.M., Improved Electrochemical Phase Diagrams from Theory and Experiment: The Ni-Water System and Its Complex Compounds (2017) J. Phys. Chem. C., 121 (18), pp. 9782-9789
dc.relation.referencesBartlett, P.N., Dawson, D.H., Electrochemistry of poly(3-thiopheneacetic acid) in aqueous solution: Evidence for an intramolecular chemical reaction (1994) J. Mater. Chem., 4, pp. 1805-1810
dc.relation.referencesNoorbakhsh, A., Salimi, A., Development of DNA electrochemical biosensor based on immobilization of ssDNA on the surface of nickel oxide nanoparticles modified glassy carbon electrode (2011) Biosens. Bioelectron., 30, pp. 188-196
dc.relation.referencesGanesana, M., Istarnboulie, G., Marty, J.L., Noguer, T., Andreescu, S., Site-specific immobilization of a (His)6-tagged acetylcholinesterase on nickel nanoparticles for highly sensitive toxicity biosensors (2011) Biosens. Bioelectron., 30, pp. 43-48
dc.relation.referencesKaszuba, K., Grzybek, M., Orłowski, A., Danne, R., Róg, T., Simons, K., Coskun, Ü., Vattulainen, I., N-Glycosylation as determinant of epidermal growth factor receptor conformation in membranes (2015) Proc. Natl. Acad. Sci. U. S. A., 112, pp. 4334-4339
dc.relation.referencesBrett, C.M.A., Electrochemical Impedance Spectroscopy in the Electrochemical Sensors and Biosensors (2022) Molecules., 27, p. 1497
dc.relation.referencesWeidler, N., Schuch, J., Knaus, F., Stenner, P., Hoch, S., Maljusch, A., Schäfer, R., Jaegermann, W., X-ray Photoelectron Spectroscopic Investigation of Plasma-Enhanced Chemical Vapor Deposited NiOx, NiOx(OH)y, and CoNiOx(OH)y: Influence of the Chemical Composition on the Catalytic Activity for the Oxygen Evolution Reaction (2017) J. Phys. Chem. C., 121, pp. 6455-6463
dc.relation.referencesEby, D.M., Artyushkova, K., Paravastu, A.K., Johnson, G.R., Probing the molecular structure of antimicrobial peptide-mediated silica condensation using X-ray photoelectron spectroscopy (2012) J. Mater. Chem., 22, pp. 9875-9883
dc.relation.referencesWasserberg, D., Cabanas-Danés, J., Prangsma, J., O'Mahony, S., Cazade, P.A., Tromp, E., Blum, C., Jonkheijm, P., Controlling Protein Surface Orientation by Strategic Placement of Oligo-Histidine Tags (2017) ACS Nano., 11, pp. 9068-9083
dc.relation.referencesQiu, X., Wegner, K.D., Wu, Y.T., Van Bergen En, P.M.P., Henegouwen, T.L., Jennings, N.H., Nanobodies and antibodies for duplexed EGFR/HER2 immunoassays using terbium-to-quantum dot FRET (2016) Chem. Mater., 28, pp. 8256-8267
dc.relation.referencesWegner, K.D., Lindén, S., Jin, Z., Jennings, T.L., El Khoulati, R., Van Bergen En, P.M.P., Henegouwen, N.H., Nanobodies and nanocrystals: Highly sensitive quantum dot-based homogeneous FRET immunoassay for serum-based EGFR detection (2014) Small., 10, pp. 734-740
dc.relation.referencesSchmidt-Ullrich, R.K., Mikkelsen, R.B., Dent, P., Todd, D.G., Valerie, K., Kavanagh, B.D., Contessa, J.N., Chen, P.B., Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation (1997) Oncogene., 15, pp. 1191-1197
dc.relation.referencesWang, Z., Zhang, X., Yang, Z., Du, H., Wu, Z., Gong, J., Yan, J., Zheng, Q., MiR-145 regulates PAK4 via the MAPK pathway and exhibits an antitumor effect in human colon cells (2012) Biochem. Biophys. Res. Commun., 427, pp. 444-449
dc.relation.referencesXu, Y., Soo, P., Walker, F., Zhang, H.H., Redpath, N., Tan, C.W., Nicola, N.A., Burgess, A.W., LRIG1 extracellular domain: Structure and function analysis (2015) J. Mol. Biol., 427, pp. 1934-1948
dc.relation.referencesLi, Y., Sun, Z., Liu, B., Shan, Y., Zhao, L., Jia, L.I., Tumor-suppressive miR-26A and miR-26B inhibit cell aggressiveness by regulating fut4 in colorectal cancer (2017) Cell Death Dis., 8 (6), pp. e2892-e
dc.relation.referencesHolbro, T., Beerli, R.R., Maurer, F., Koziczak, M., Barbas, C.F., Hynes, N.E., The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation (2003) Proc. Natl. Acad. Sci. U.S.A., 100 (15), pp. 8933-8938
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem