Mostrar el registro sencillo del ítem

dc.contributor.authorJimenez-Orozco C
dc.contributor.authorFlórez E
dc.contributor.authorViñes F
dc.contributor.authorRodriguez J.A
dc.contributor.authorIllas F.
dc.date.accessioned2023-10-24T19:24:02Z
dc.date.available2023-10-24T19:24:02Z
dc.date.created2023
dc.identifier.issn19327447
dc.identifier.urihttp://hdl.handle.net/11407/7912
dc.description.abstractEthylene hydrogenation catalyzed by MoCy nanoparticles has been studied by means of density functional theory methods and several models. These include MetCar (Mo8C12), Nanocube (Mo14C13), and Mo12C12 nanoparticles as representatives of experimental MoCy nanostructures. The effect of hydrogen coverage has been studied in detail by considering low-, intermediate-, and high-hydrogen regimes. The calculated enthalpy and energy barriers show that ethylene hydrogenation is feasible on the MetCar, Mo12C12, and Nanocube but at low, medium, and high hydrogen coverages, respectively. An additional step, related to the Heng
dc.description.abstractmigration from a Mo to a C site in the nanoparticle, has been found to be the key to establishing the best hydrogenation system. In most cases, the reactions are exothermic, featuring low hydrogenation energy barriers, especially for the Nanocube at high hydrogen coverage. In addition, the calculated adsorption Gibbs free energy shows that, for this system, the C2H4 adsorption is feasible in the 300-400 K temperature range and pressures from 10-10 to 2 atm. For the hydrogenation steps, calculated transition state theory rates show that the overall process is limited by the first hydrogenation step (C2H4 → C2H5) at temperatures of 330-400 K. However, at the lower temperatures of 300-320 K, the reaction rates are comparable for the two steps. The present results indicate that the Mo14C13 Nanocube models of MoCy nanoparticles exhibit appropriate thermodynamic and kinetic features to catalyze ethylene hydrogenation at a high-hydrogen-coverage regime. The present findings provide a basis for understanding the chemistry of active MoCy catalysts, suggest appropriate working conditions for the reaction to proceed, and provide a basis for future experimental studies. © 2023 American Chemical Society.eng
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85154029448&doi=10.1021%2facs.jpcc.3c00435&partnerID=40&md5=af0cb88a66eecff9b3c78db94cdb3762
dc.sourceJ. Phys. Chem. C
dc.sourceJournal of Physical Chemistry Ceng
dc.titleEthylene Hydrogenation Molecular Mechanism on MoCy Nanoparticleseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1021/acs.jpcc.3c00435
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationJimenez-Orozco, C., Facultad de Ciencias Básicas, Grupo de Materiales con Impacto (Mat&mpac), Universidad de Medellín, Carrera 87 No 30-65, Medellín, 050026, Colombia
dc.affiliationFlórez, E., Facultad de Ciencias Básicas, Grupo de Materiales con Impacto (Mat&mpac), Universidad de Medellín, Carrera 87 No 30-65, Medellín, 050026, Colombia
dc.affiliationViñes, F., Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, Barcelona, 08028, Spain
dc.affiliationRodriguez, J.A., Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, United States
dc.affiliationIllas, F., Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, Barcelona, 08028, Spain
dc.relation.referencesWilson, J.N., Otvos, J.W., Stevenson, D.P., Wagner, C.D., Hydrogenation of Olefins over Metals (1953) Ind. Eng. Chem., 45, pp. 1480-1487
dc.relation.referencesDhandapani, B., St Clair, T., Oyama, S.T., Simultaneous Hydrodesulfurization, Hydrodeoxygenation, and Hydrogenation with Molybdenum Carbide (1998) Appl. Catal., A, 168, pp. 219-228
dc.relation.referencesArdakani, S.J., Liu, X., Smith, K.J., Hydrogenation and Ring Opening of Naphthalene on Bulk and Supported Mo2C Catalysts (2007) Appl. Catal. A, 324, pp. 9-19
dc.relation.referencesPosada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The Bending Machine: CO2 Activation and Hydrogenation on δ-MoC(001) and β-Mo2C(001) Surfaces (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921
dc.relation.referencesRodriguez, J.A., Ramírez, P.J., Gutierrez, R.A., Highly Active Pt/MoC and Pt/TiC Catalysts for the Low-Temperature Water-Gas Shift Reaction: Effects of the Carbide Metal/Carbon Ratio on the Catalyst Performance (2017) Catal. Today, 289, pp. 47-52
dc.relation.referencesFrauwallner, M.L., López-Linares, F., Lara-Romero, J., Scott, C.E., Ali, V., Hernández, E., Pereira-Almao, P., Toluene Hydrogenation at Low Temperature Using a Molybdenum Carbide Catalyst (2011) Appl. Catal., A, 394, pp. 62-70
dc.relation.referencesJimenez-Orozco, C., Flórez, E., Viñes, F., Rodriguez, J.A., Illas, F., Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study (2020) ACS Catal., 10, pp. 6213-6222
dc.relation.referencesKoverga, A.A., Jimenez-Orozco, C., Flórez, E., Rodriguez, J.A., Spot the difference: hydrogen adsorption and dissociation on unsupported platinum and platinum-coated transition metal carbides (2021) Phys. Chem. Chem. Phys., 23, pp. 20255-20267
dc.relation.referencesLevy, R.B., Boudart, M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science, 181, pp. 547-549
dc.relation.referencesPosada-Pérez, S., Ramírez, P.J., Evans, J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO2: The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability (2016) J. Am. Chem. Soc., 138, pp. 8269-8278
dc.relation.referencesPosada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and Dissociation of Molecular Hydrogen on Orthorhombic β-Mo2C and Cubic δ-MoC (001) Surfaces (2017) Surf. Sci., 656, pp. 24-32
dc.relation.referencesPosada-Pérez, S., Ramírez, P.J., Gutiérrez, R.A., Stacchiola, D.J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., The conversion of CO2 to methanol on orthorhombic β-Mo2C and Cu/β-Mo2C catalysts: mechanism for admetal induced change in the selectivity and activity (2016) Catal. Sci. Technol., 6, pp. 6766-6777
dc.relation.referencesJimenez-Orozco, C., Flórez, E., Moreno, A., Rodriguez, J.A., Platinum vs Transition Metal Carbide Surfaces as Catalysts for Olefin and Alkyne Conversion: Binding and Hydrogenation of Ethylidyne (2019) J. Phys.: Conf. Ser., 1247
dc.relation.referencesFigueras, M., Gutiérrez, R.A., Viñes, F., Ramírez, P.J., Rodriguez, J.A., Illas, F., Supported Molybdenum Carbide Nanoparticles as an Excellent Catalyst for CO2 Hydrogenation (2021) ACS Catal., 11, pp. 9679-9687
dc.relation.referencesFigueras, M., Gutiérrez, R.A., Viñes, F., Ramírez, P.J., Rodriguez, J.A., Illas, F., Supported Molybdenum Carbide Nanoparticles as Hot Hydrogen Reservoirs for Catalytic Applications (2020) J. Phys. Chem. Lett., 11, pp. 8437-8441
dc.relation.referencesCao, S., Ma, Y., Chu, W., Liu, Y., High-density MoCx nanoclusters anchored on nanodiamond-derived nanocarbon as a robust CO2 reduction catalyst for syngas production (2022) Fuel, 323
dc.relation.referencesJimenez-Orozco, C., Figueras, M., Flórez, E., Viñes, F., Rodriguez, J.A., Illas, F., Size and Stoichiometry Effects on the Reactivity of MoCy Nanoparticles toward Ethylene (2021) J. Phys. Chem. C, 125, pp. 6287-6297
dc.relation.referencesJimenez-Orozco, C., Figueras, M., Flórez, E., Viñes, F., Rodriguez, J.A., Illas, F., Effect of nanostructuring on the interaction of CO2 with molybdenum carbide nanoparticles (2022) Phys. Chem. Chem. Phys., 24, pp. 16556-16565
dc.relation.referencesKresse, G., Furthmüller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set (1996) Phys. Rev. B, 54, pp. 11169-11186
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868
dc.relation.referencesPoliti, J.R.D.S., Viñes, F., Rodriguez, J.A., Illas, F., Atomic and Electronic Structure of Molybdenum Carbide Phases: Bulk and Low Miller-Index Surfaces (2013) Phys. Chem. Chem. Phys., 15, p. 12617
dc.relation.referencesGrimme, S., Antony, J., Ehrlich, S., Krieg, H., A Consistent and Accurate Ab Initio ParameJtrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu (2010) J. Chem. Phys., 132
dc.relation.referencesBlöchl, P.E., Projector Augmented-Wave Method (1994) Phys. Rev. B, 50, pp. 17953-17979
dc.relation.referencesKresse, G., Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method (1999) Phys. Rev. B, 59, pp. 1758-1775
dc.relation.referencesHjorth Larsen, A., Jørgen Mortensen, J., Blomqvist, J., Castelli, I.E., Christensen, R., Dułak, M., Friis, J., Hargus, C., The Atomic Simulation Environment―a Python Library for Working with Atoms (2017) J. Phys.: Condens. Matter, 29
dc.relation.referencesHenkelman, G., Uberuaga, B.P., Jónsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths (2000) J. Chem. Phys., 113, pp. 9901-9904
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem