Mostrar el registro sencillo del ítem

dc.contributor.authorArias-Jaramillo Y.P
dc.contributor.authorGómez-Cano D
dc.contributor.authorCarvajal G.I
dc.contributor.authorHidalgo C.A
dc.contributor.authorMuñoz F.
dc.date.accessioned2023-10-24T19:24:02Z
dc.date.available2023-10-24T19:24:02Z
dc.date.created2023
dc.identifier.issn19961944
dc.identifier.urihttp://hdl.handle.net/11407/7913
dc.description.abstractThis study evaluates a binary mixture of fly ash and lime as a stabilizer for natural soils. A comparative analysis was performed on the effect on the bearing capacity of silty, sandy and clayey soils after the addition of lime and ordinary Portland cement as conventional stabilizers, and a non-conventional product of a binary mixture of fly ash and Ca(OH)2 called FLM. Laboratory tests were carried out to evaluate the effect of additions on the bearing capacity of stabilized soils by unconfined compressive strength (UCS). In addition, a mineralogical analysis to validate the presence of cementitious phases due to chemical reactions with FLM was performed. The highest UCS values were found in the soils that required the highest water demand for compaction. Thus, the silty soil added with FLM reached 10 MPa after 28 days of curing, which was in agreement with the analysis of the FLM pastes, where soil moistures higher than 20% showed the best mechanical characteristics. Furthermore, a 120 m long track was built with stabilized soil to evaluate its structural behavior for 10 months. An increase of 200% in the resilient modulus of the FLM-stabilized soils was identified, and a decrease of up to 50% in the roughness index of the FLM, lime (L) and Ordinary Portland Cement (OPC)-stabilized soils compared to the soil without addition, resulting in more functional surfaces. © 2023 by the authors.eng
dc.language.isoeng
dc.publisherMDPI
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85161530390&doi=10.3390%2fma16113996&partnerID=40&md5=5249ca0cf5a56767a3aec7c6b916b193
dc.sourceMater.
dc.sourceMaterialseng
dc.subjectClayey soileng
dc.subjectFly asheng
dc.subjectMechanical behavioreng
dc.subjectPozzolanic effecteng
dc.subjectSandy soileng
dc.subjectSlimy soileng
dc.subjectSoil stabilizedeng
dc.titleEvaluation of the Effect of Binary Fly Ash-Lime Mixture on the Bearing Capacity of Natural Soils: A Comparison with Two Conventional Stabilizers Lime and Portland Cementeng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.type.spaArtículo
dc.identifier.doi10.3390/ma16113996
dc.relation.citationvolume16
dc.relation.citationissue11
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationArias-Jaramillo, Y.P., Department of Construction, School of Architecture, Universidad Nacional de Colombia, Medellín, 050034, Colombia
dc.affiliationGómez-Cano, D., Department of Construction, School of Architecture, Universidad Nacional de Colombia, Medellín, 050034, Colombia
dc.affiliationCarvajal, G.I., Engineering Faculty, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationHidalgo, C.A., Engineering Faculty, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationMuñoz, F., Engineering Faculty, Universidad Cooperativa de Colombia, Medellín, 050012, Colombia
dc.relation.referencesPetry, T.M., Little, D.N., Review of Stabilization of Clays and Expansive Soils in Pavements and Lightly Loaded Structures-History, Practice, and Future (2002) J. Mater. Civ. Eng, 14, pp. 447-460
dc.relation.referencesBehnood, A., Soil and clay stabilization with calcium- and non-calcium-based additives: A state-of-the-art review of challenges, approaches and techniques (2018) Transp. Geotech, 17, pp. 14-32
dc.relation.referencesKolias, S., Kasselouri-Rigopoulou, V., Karahalios, A., Stabilisation of clayey soils with high calcium fly ash and cement (2005) Cem. Concr. Compos, 27, pp. 301-313
dc.relation.referencesIjaz, N., Ye, W., Rehman, Z.U., Ijaz, Z., Novel application of low carbon limestone calcined clay cement (LC3) in expansive soil stabilization: An eco-efficient approach (2022) J. Clean. Prod, 371, p. 133492
dc.relation.referencesRashad, A.M., A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash (2014) Mater. Des, 53, pp. 1005-1025
dc.relation.referencesHorpibulsuk, S., Phetchuay, C., Chinkulkijniwat, A., Cholaphatsorn, A., Strength development in silty clay stabilized with calcium carbide residue and fly ash (2013) Soils Found, 53, pp. 477-486
dc.relation.referencesHossain, K., Mol, L., Some engineering properties of stabilized clayey soils incorporating natural pozzolans and industrial wastes (2011) Constr. Build. Mater, 25, pp. 3495-3501
dc.relation.referencesHoyos, L.R., Laikram, A., Puppala, A., Behavior of Chemically Stabilized Sulfate-Rich Expansive Clay under Quick-Aging Environment Proceedings of the GeoShanghai International Conference 2006, , Shangai, China, 6–8 June 2006
dc.relation.referencesHorpibulsuk, S.K., Rachan, R.L., Chinkulkijniwat, A., Raksachon, Y., Suddeepong, A., Analysis of strength development in cement-stabilized silty clay from microstructural considerations (2010) Constr. Build. Mater, 24, pp. 2011-2021
dc.relation.referencesMcCarthy, M., Csetenyi, L., Sachdeva, A., Dhir, R., Identifying the role of fly ash properties for minimizing sulfate-heave in lime-stabilized soils (2012) Fuel, 92, pp. 27-36
dc.relation.referencesKhemissa, M., Mahamedi, A., Cement and lime mixture stabilization of an expansive overconsolidated clay (2014) Appl. Clay Sci, 95, pp. 104-110
dc.relation.referencesProvis, J.L., Palomo, A., Shi, C., Advances in understanding alkali-activated materials (2015) Cem. Concr. Res, 78, pp. 110-125
dc.relation.referencesAlsafi, S., Farzadnia, N., Asadi, A., Huat, B.K., Collapsibility potential of gypseous soil stabilized with fly ash geopolymer
dc.relation.referencescharacterization and assessment (2017) Constr. Build. Mater, 137, pp. 390-409
dc.relation.referencesZhang, M., Zhao, M., Zhang, G., Nowak, P., Coen, A., Tao, M., Calcium-free geopolymer as a stabilizer for sulfate-rich soils (2015) Appl. Clay Sci, 108, pp. 199-207
dc.relation.referencesRehman, Z.U., Khalid, U., Reuse of COVID-19 face mask for the amelioration of mechanical properties of fat clay: A novel solution to an emerging waste problem (2021) Sci. Total. Environ, 794, p. 148746
dc.relation.referencesPalomo, A., López de la Fuente, J.I., Alkali-activated cementitous materials: Alternative matrices for the immobilisation of hazardous wastes-Part I. Stabilisation of boron (2003) Cem. Concr. Res, 33, pp. 281-288
dc.relation.referencesRenjith, R., Robert, D., Setunge, S., Costa, S., Mohajerani, A., Optimization of fly ash based soil stabilization using secondary admixtures for sustainable road construction (2021) J. Clean. Prod, 294, p. 126264
dc.relation.referencesVelázquez, S., Monzó, J., Borrachero, M.V., Soriano, L., Payá, J., Evaluation of the pozzolanic activity of spent FCC catalyst/fly ash mixtures in Portland cement pastes (2016) Thermochim. Acta, 632, pp. 29-36
dc.relation.referencesLi, X., Bai, C., Qiao, Y., Wang, X., Yang, K., Colombo, P., Preparation, properties and applications of fly ash-based porous geopolymers: A review (2022) J. Clean. Prod, 359, p. 132043
dc.relation.referencesMahvash, S., López-Querol, S., Bahadori-Jahromi, A., Effect of class F fly ash on fine sand compaction through soil stabilization (2017) Heliyon, 3, p. e00274
dc.relation.referencesRivera, J.F., Orobio, A., Cristelo, N., Mejia de Gutiérrez, R., Fly ash-based geopolymer as A4 type soil stabiliser (2020) Transp. Geotech, 25, p. 100409
dc.relation.referencesGriffin, J.A., Hoyos, L.R., Chomtid, S., Studies on Sulfate-Resistant Cement Stabilization Methods to Address Sulfate-Induced Soil Heave (2004) J. Geotech. Geoenvironmental Eng, 130, pp. 391-402
dc.relation.referencesMcCarthy, M.J., Csetenyi, L.J., Sachdeva, A., Dhir, R.K., Engineering and durability properties of fly ash treated lime-stabilised sulphate-bearing soils (2014) Eng. Geol, 174, pp. 139-148
dc.relation.referencesPuppala, A.J., Ijaz, N., Ye, W., ur Rehman, Z., Ijaz, Z., Junaid, M.F., New binary paper/wood industry waste blend for solidification/stabilisation of problematic soil subgrade: Macro-micro study (2023) Road Mater. Pavement Des, 24, pp. 1215-1232
dc.relation.referencesIjaz, N., Dai, F., Meng, L., Rehman, Z.U., Zhang, H., Integrating lignosulphonate and hydrated lime for the amelioration of expansive soil: A sustainable waste solution (2020) J. Clean. Prod, 254, p. 119985
dc.relation.referencesde Souza Junior, T.F., Salvagni Heineck, K., Falavigna Silva, C., Dalla Rosa, F., Mechanical behavior and durability of a typical frictional cohesive soil from Rio Grande do Sul/Brazil improved with Portland cement (2022) Transp. Geotech, 34, p. 100751
dc.relation.referencesTonini de Araújo, M., Tonatto Ferrazzo, S., Mansur Chaves, H., Gravina da Rocha, C., Cesar Consoli, N., Mechanical behavior, mineralogy, and microstructure of alkali-activated wastes-based binder for a clayey soil stabilization (2023) Constr. Build. Mater, 362, p. 129757
dc.relation.referencesGómez-Cano, D., Arias-Jaramillo, Y.P., Bernal-Correa, R.B.-C., Tobón, J.I., Effect of enhancement treatments applied to recycled concrete aggregates on concrete durability: A review (2023) Materiales de Construcción, 73, p. e308
dc.relation.referencesJha, A.K., Sivapullaiah, P.V., Physical and strength development in lime treated gypseous soil with fly ash—Micro-analyses (2017) Appl. Clay Sci, 145, pp. 17-27
dc.relation.referencesPrabakar, J., Dendorkar, N., Morchhale, R., Influence of fly ash on strength behavior of typical soils (2004) Constr. Build. Mater, 18, pp. 263-267
dc.relation.referencesQuintero, A.B., Cano, D.G., Peláez, G.C., Arias, Y.P., Technical and Environmental Assessment of an Alternative Binder for Low Traffic Roads with LCA Methodology (2017) Proceedings of the 3rd Pan American Materials Congress, , The Minerals, Metals & Materials Series, Springer International Publishing, Cham, Switzerland
dc.relation.referencesKodikara, J., Islam, T., Sounthararajah, A., Review of soil compaction: History and recent developments (2018) Transp. Geotech, 17, pp. 24-34
dc.relation.referencesMontoya Jaramilo, L.J., (2017) Vías de Bajo Volumen de Tránsito, , 1st ed., Sello Editorial Universidad de Medellín, Medellín, Colombia
dc.relation.referencesSiddiqua, S., Barreto, P.N., Chemical stabilization of rammed earth using calcium carbide residue and fly ash (2018) Constr. Build. Mater, 169, pp. 364-371
dc.relation.referencesJo, M., Soto, L., Arocho, M., St John, J., Hwang, S., Optimum mix design of fly ash geopolymer paste and its use in pervious concrete for removal of fecal coliforms and phosphorus in water (2015) Constr. Build. Mater, 93, pp. 1097-1104
dc.relation.referencesBalaguera, A., Carvajal, G.I., Arias, Y.P., Albertí, J., Fullana-i-Palmer, P., Technical feasibility and life cycle assessment of an industrial waste as stabilizing product for unpaved roads, and influence of packaging (2019) Sci. Total Environ, 651, pp. 1272-1282. , 30360259
dc.relation.referencesLi, C., Vennapusa, P.K., Ashlock, J., White, D.J., Mechanistic-based comparisons for freeze-thaw performance of stabilized unpaved roads (2017) Cold Reg. Sci. Technol, 141, pp. 97-108
dc.relation.referencesArm, M., Vestin, J., Lind, B.B., Lagerkvist, A., Nordmark, D., Hallgren, P., Pulp mill fly ash for stabilization of low-volume unpaved forest roads—Field performance (2014) Can. J. Civ. Eng, 41, pp. 955-963
dc.relation.referencesHuber, S., Henzinger, C., Heyer, D., Influence of water and frost on the performance of natural and recycled materials used in unpaved roads and road shoulders (2020) Transp. Geotech, 22, p. 100305
dc.relation.referencesur Rehman, Z., Ijaz, N., Ye, W., Ijaz, Z., Design optimization and statistical modeling of recycled waste-based additive for a variety of construction scenarios on heaving ground (2023) Environ. Sci. Pollut. Res, 30, pp. 39783-39802
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem