Mostrar el registro sencillo del ítem

dc.contributor.authorBedoya-Cardona J.E
dc.contributor.authorRubio-Carrasquilla M
dc.contributor.authorRamírez-Velásquez I.M
dc.contributor.authorValdés-Tresanco M.S
dc.contributor.authorMoreno E.
dc.date.accessioned2023-10-24T19:24:15Z
dc.date.available2023-10-24T19:24:15Z
dc.date.created2023
dc.identifier.issn14203049
dc.identifier.urihttp://hdl.handle.net/11407/7926
dc.description.abstractInvasive fungal infections represent a public health problem that worsens over the years with the increasing resistance to current antimycotic agents. Therefore, there is a compelling medical need of widening the antifungal drug repertoire, following different methods such as drug repositioning, identification and validation of new molecular targets and developing new inhibitors against these targets. In this work we developed a structure-based strategy for drug repositioning and new drug design, which can be applied to infectious fungi and other pathogens. Instead of applying the commonly accepted off-target criterion to discard fungal proteins with close homologues in humans, the core of our approach consists in identifying fungal proteins with active sites that are structurally similar, but preferably not identical to binding sites of proteins from the so-called “human pharmacolome”. Using structural information from thousands of human protein target-inhibitor complexes, we identified dozens of proteins in fungal species of the genera Histoplasma, Candida, Cryptococcus, Aspergillus and Fusarium, which might be exploited for drug repositioning and, more importantly, also for the design of new fungus-specific inhibitors. As a case study, we present the in vitro experiments performed with a set of selected inhibitors of the human mitogen-activated protein kinases 1/2 (MEK1/2), several of which showed a marked cytotoxic activity in different fungal species. © 2023 by the authors.eng
dc.language.isoeng
dc.publisherMDPI
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85146787809&doi=10.3390%2fmolecules28020692&partnerID=40&md5=2042fa89b2a019e08b021469d36ad36c
dc.sourceMolecules
dc.sourceMoleculeseng
dc.subjectDrug developmenteng
dc.subjectDrug repurposingeng
dc.subjectFungal pathogenseng
dc.subjectMEK inhibitorseng
dc.subjectNew therapeutic targetseng
dc.subjectStructural bioinformaticseng
dc.titleIdentifying Potential Molecular Targets in Fungi Based on (Dis)Similarities in Binding Site Architecture with Proteins of the Human Pharmacolomeeng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.3390/molecules28020692
dc.relation.citationvolume28
dc.relation.citationissue2
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationBedoya-Cardona, J.E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellin, 050026, Colombia
dc.affiliationRubio-Carrasquilla, M., Facultad de Ciencias Básicas, Universidad de Medellín, Medellin, 050026, Colombia, Corporación para Investigaciones Biológicas, Medellin, 050034, Colombia
dc.affiliationRamírez-Velásquez, I.M., Facultad de Ciencias Básicas, Universidad de Medellín, Medellin, 050026, Colombia, Instituto Tecnológico Metropolitano, Medellin, 050034, Colombia
dc.affiliationValdés-Tresanco, M.S., Facultad de Ciencias Básicas, Universidad de Medellín, Medellin, 050026, Colombia
dc.affiliationMoreno, E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellin, 050026, Colombia
dc.relation.referencesZeng, H., Wu, Z., Yu, B., Wang, B., Wu, C., Wu, J., Lai, J., Chen, J., Network Meta-Analysis of Triazole, Polyene, and Echinocandin Antifungal Agents in Invasive Fungal Infection Prophylaxis in Patients with Hematological Malignancies (2021) BMC Cancer, 21. , 33853560
dc.relation.referencesVallabhaneni, S., Mody, R.K., Walker, T., Chiller, T., The Global Burden of Fungal Diseases (2016) Infect. Dis. Clin. N. Am, 30, pp. 1-11. , 26739604
dc.relation.referencesSeagle, E.E., Williams, S.L., Chiller, T.M., Recent Trends in the Epidemiology of Fungal Infections (2021) Infect. Dis. Clin. N. Am, 35, pp. 237-260
dc.relation.referencesCampoy, S., Adrio, J.L., Antifungals (2017) Biochem. Pharmacol, 133, pp. 86-96
dc.relation.referencesHoušť, J., Spížek, J., Havlíček, V., Antifungal Drugs (2020) Metabolites, 10
dc.relation.referencesNami, S., Aghebati-Maleki, A., Morovati, H., Aghebati-Maleki, L., Current Antifungal Drugs and Immunotherapeutic Approaches as Promising Strategies to Treatment of Fungal Diseases (2019) Biomed. Pharmacother, 110, pp. 857-868. , 30557835
dc.relation.referencesWheat, L.J., Azar, M.M., Bahr, N.C., Spec, A., Relich, R.F., Hage, C., Histoplasmosis (2016) Infect. Dis. Clin. N. Am, 30, pp. 207-227
dc.relation.referencesSosa, E.J., Burguener, G., Lanzarotti, E., Defelipe, L., Radusky, L., Pardo, A.M., Marti, M., Fernández Do Porto, D., Target-Pathogen: A Structural Bioinformatic Approach to Prioritize Drug Targets in Pathogens (2018) Nucl. Acids Res, 46, pp. D413-D418
dc.relation.referencesMukherjee, S., Kundu, I., Askari, M., Barai, R.S., Venkatesh, K.V., Idicula-Thomas, S., Exploring the Druggable Proteome of Candida Species through Comprehensive Computational Analysis (2021) Genomics, 113, pp. 728-739
dc.relation.referencesPalumbo, M., Sosa, E., Castello, F., Schottlender, G., Serral, F., Turjanski, A., Palomino, M.M., do Porto, D.F., Integrating Diverse Layers of Omic Data to Identify Novel Drug Targets in Listeria Monocytogenes (2022) Front. Drug Discov, 2, p. 969415
dc.relation.referencesAshburn, T.T., Thor, K.B., Drug Repositioning: Identifying and Developing New Uses for Existing Drugs (2004) Nat. Rev. Drug Discov, 3, pp. 673-683. , 15286734
dc.relation.referencesPushpakom, S., Iorio, F., Eyers, P.A., Escott, K.J., Hopper, S., Wells, A., Doig, A., McNamee, C., Drug Repurposing: Progress, Challenges and Recommendations (2018) Nat. Rev. Drug. Discov, 18, pp. 41-58. , 30310233
dc.relation.referencesXue, H., Li, J., Xie, H., Wang, Y., Review of Drug Repositioning Approaches and Resources (2018) Int. J. Biol. Sci, 14, pp. 1232-1244
dc.relation.referencesJourdan, J.P., Bureau, R., Rochais, C., Dallemagne, P., Drug Repositioning: A Brief Overview (2020) J. Pharm. Pharmacol, 72, pp. 1145-1151. , 32301512
dc.relation.referencesVanhaelen, Q., (2019) Computational Methods for Drug Repurposing, 1903. , Humana, New York, NY, USA
dc.relation.referencesPaul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., Tekade, R.K., Artificial Intelligence in Drug Discovery and Development (2021) Drug Discov. Today, 26, pp. 80-93. , 33099022
dc.relation.referencesPeyclit, L., Yousfi, H., Rolain, J.M., Bittar, F., Drug Repurposing in Medical Mycology: Identification of Compounds as Potential Antifungals to Overcome the Emergence of Multidrug-Resistant Fungi (2021) Pharmaceuticals, 14. , 34065420
dc.relation.referencesChavez-Dozal, A.A., Lown, L., Jahng, M., Walraven, C.J., Lee, S.A., In Vitro Analysis of Finasteride Activity against Candida Albicans Urinary Biofilm Formation and Filamentation (2014) Antimicrob. Agents Chemother, 58, pp. 5855-5862
dc.relation.referencesNasr Esfahani, A., Golestannejad, Z., Khozeimeh, F., Dehghan, P., Maheronnaghsh, M., Zarei, Z., Antifungal Effect of Atorvastatin against Candida Species in Comparison to Fluconazole and Nystatin (2019) Med. Pharm. Rep, 98, pp. 368-373
dc.relation.referencesDidone, L., Scrimale, T., Baxter, B.K., Krysan, D.J., A High-Throughput Assay of Yeast Cell Lysis for Drug Discovery and Genetic Analysis (2010) Nat. Protoc, 5, pp. 1107-1114
dc.relation.referencesButts, A., DiDone, L., Koselny, K., Baxter, B.K., Chabrier-Rosello, Y., Wellington, M., Krysanb, D.J., A Repurposing Approach Identifies Off-Patent Drugs with Fungicidal Cryptococcal Activity, a Common Structural Chemotype, and Pharmacological Properties Relevant to the Treatment of Cryptococcosis (2013) Eukaryot. Cell, 12, pp. 278-287
dc.relation.referencesKim, K., Zilbermintz, L., Martchenko, M., Repurposing FDA Approved Drugs against the Human Fungal Pathogen, Candida Albicans (2015) Ann. Clin. Microbiol. Antimicrob, 14, p. 32. , 26054754
dc.relation.referencesWall, G., Chaturvedi, A.K., Wormley, F.L., Wiederhold, N.P., Patterson, H.P., Patterson, T.F., Lopez-Ribot, J.L., Screening a Repurposing Library for Inhibitors of Multidrug-Resistant Candida Auris Identifies Ebselen as a Repositionable Candidate for Antifungal Drug Development (2018) Antimicrob. Agents Chemother, 62, pp. e01084-18. , 30104269
dc.relation.referencesMiró-Canturri, A., Ayerbe-Algaba, R., Smani, Y., Drug Repurposing for the Treatment of Bacterial and Fungal Infections (2019) Front. Microbiol, 10, p. 41. , 30745898
dc.relation.referencesPereira de Mello, T., Nunes Silva, L., de Souza Ramos, L., Freire Frota, H., Branquinha, M.H., Sousa dos Santos, A.L., Drug Repurposing Strategy against Fungal Biofilms (2020) Curr. Top. Med. Chem, 20, pp. 509-516
dc.relation.referencesWall, G., Lopez-Ribot, J.L., Screening Repurposing Libraries for Identification of Drugs with Novel Antifungal Activity (2020) Antimicrob. Agents Chemother, 64, pp. e00924-20. , 32660991
dc.relation.referencesSantos, R., Ursu, O., Gaulton, A., Bento, A.P., Donadi, R.S., Bologa, C.G., Karlsson, A., Oprea, T.I., A Comprehensive Map of Molecular Drug Targets (2016) Nat. Rev. Drug. Discov, 16, pp. 19-34. , 27910877
dc.relation.referencesBerkes, C., Franco, J., Lawson, M., Brann, K., Mermelstein, J., Laverty, D., Connors, A., Kinase Inhibitor Library Screening Identifies the Cancer Therapeutic Sorafenib and Structurally Similar Compounds as Strong Inhibitors of the Fungal Pathogen Histoplasma Capsulatum (2021) Antibiotics, 10
dc.relation.referencesMacreadie, I.G., Johnson, G., Schlosser, T., Macreadie, P.I., Growth Inhibition of Candida Species and Aspergillus Fumigatus by Statins (2006) FEMS Microbiol. Lett, 262, pp. 9-13
dc.relation.referencesHao, W., Qiao, D., Han, Y., Du, N., Li, X., Fan, Y., Ge, X., Zhang, H., Identification of Disulfiram as a Potential Antifungal Drug by Screening Small Molecular Libraries (2021) J. Infect. Chemother, 27, pp. 696-701
dc.relation.referencesAntypenko, L., Sadykova, Z., Meyer, F., Garbe, L.A., Steffens, K., Tacrolimus as Antifungal Agent (2019) Acta Chim. Slov, 66, pp. 784-791
dc.relation.referencesTu, B., Yin, G., Li, H., Synergistic Effects of Vorinostat (SAHA) and Azoles against Aspergillus Species and Their Biofilms (2020) BMC Microbiol, 20. , 32028887
dc.relation.referencesOhren, J.F., Chen, H., Pavlovsky, A., Whitehead, C., Zhang, E., Kuffa, P., Yan, C., Banotai, C., Structures of Human MAP Kinase Kinase 1 (MEK1) and MEK2 Describe Novel Noncompetitive Kinase Inhibition (2004) Nat. Struct. Mol. Biol, 11, pp. 1192-1197
dc.relation.referencesHan, J., Liu, Y., Yang, S., Wu, X., Li, H., Wang, Q., MEK Inhibitors for the Treatment of Non-Small Cell Lung Cancer (2021) J. Hematol. Oncol, 14, p. 1
dc.relation.referencesBechman, K., Galloway, J.B., Winthrop, K.L., Small-Molecule Protein Kinases Inhibitors and the Risk of Fungal Infections (2019) Curr. Fungal Infect. Rep, 13, pp. 229-243
dc.relation.referencesDong-mei, M.A., Ya-juan, J.I., Fang, Y., Wei, L.I.U., Zhe, W.A.N., Ruo-yu, L.I., Effects of U0126 on Growth and Activation of Mitogen-Activated Protein Kinases in Aspergillus Fumigatus (2013) Chin. Med. J, 126, pp. 220-225
dc.relation.referencesFan, Y., Gu, S., Dong, J., Dong, B., Effects of MEK-Specific Inhibitor U0126 on the Conidial Germination, Appressorium Production, and Pathogenicity of Setosphaeria Turcica (2007) Agric. Sci. China, 6, pp. 78-85
dc.relation.referencesSingh, A., Ruan, Y., Tippett, T., Narendran, A., Targeted Inhibition of MEK1 by Cobimetinib Leads to Differentiation and Apoptosis in Neuroblastoma Cells (2015) J. Exp. Clin. Cancer Res, 34, p. 104
dc.relation.referencesLee, K.W., Kang, N.J., Rogozin, E.A., Kim, H.G., Cho, Y.Y., Bode, A.M., Lee, H.J., Dong, Z., Myricetin Is a Novel Natural Inhibitor of Neoplastic Cell Transformation and MEK1 (2007) Carcinogenesis, 28, pp. 1918-1927
dc.relation.referencesIverson, C., Larson, G., Lai, C., Yeh, L.T., Dadson, C., Weingarten, P., Appleby, T., Vernier, J.M., RDEA119/BAY 869766: A Potent, Selective, Allosteric Inhibitor of MEK1/2 for the Treatment of Cancer (2009) Cancer Res, 69, pp. 6839-6847
dc.relation.referencesSalama, A.K.S., Kim, K.B., Trametinib (GSK1120212) in the Treatment of Melanoma (2013) Expert Opin. Pharmacother, 14, pp. 619-627
dc.relation.referencesHatzivassiliou, G., Haling, J.R., Chen, H., Song, K., Price, S., Heald, R., Hewitt, J.F.M., Orr, C., Mechanism of MEK Inhibition Determines Efficacy in Mutant KRAS- versus BRAF-Driven Cancers (2013) Nature, 501, pp. 232-236. , 23934108
dc.relation.referencesYeh, T.C., Marsh, V., Bernat, B.A., Ballard, J., Colwell, H., Evans, R.J., Parry, J., Gross, S., Biological Characterization of ARRY-142886 (AZD6244), a Potent, Highly Selective Mitogen-Activated Protein Kinase Kinase 1/2 Inhibitor (2007) Clin. Cancer Res, 13, pp. 1576-1583. , 17332304
dc.relation.referencesDong, Q., Dougan, D.R., Gong, X., Halkowycz, P., Jin, B., Kanouni, T., O’Connell, S.M., Wallace, M.B., Discovery of TAK-733, a Potent and Selective MEK Allosteric Site Inhibitor for the Treatment of Cancer (2011) Bioorg. Med. Chem. Lett, 21, pp. 1315-1319
dc.relation.referencesWishart, D.S., Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., Woolsey, J., DrugBank: A Comprehensive Resource for in Silico Drug Discovery and Exploration (2006) Nucleic Acids Res, 34, pp. D668-D672. , 16381955
dc.relation.referencesBateman, A., Martin, M.J., Orchard, S., Magrane, M., Agivetova, R., Ahmad, S., Alpi, E., Bursteinas, B., UniProt: The Universal Protein Knowledgebase in 2021 (2021) Nucleic Acids Res, 49, pp. D480-D489
dc.relation.referencesBernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Tasumi, M., The Protein Data Bank: A Computer-Based Archival File for Macromolecular Structures (1977) J. Mol. Biol, 112, pp. 535-542
dc.relation.referencesMoreno, E., León, K., Geometric and Chemical Patterns of Interaction in Protein-Ligand Complexes and Their Application in Docking (2002) Proteins Struct. Funct. Genet, 47, pp. 1-13
dc.relation.referencesHumphrey, W., Dalke, A., Schulten, K., VMD: Visual Molecular Dynamics (1996) J. Mol. Graph, 14, pp. 33-38
dc.relation.referencesAltschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic Local Alignment Search Tool (1990) J. Mol. Biol, 215, pp. 403-410
dc.relation.referencesWaterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., Bordoli, L., SWISS-MODEL: Homology Modelling of Protein Structures and Complexes (2018) Nucleic Acids Res, 46, pp. W296-W303
dc.relation.referencesTecle, H., Shao, J., Li, Y., Kothe, M., Kazmirski, S., Penzotti, J., Ding, Y.H., Coli, R., Beyond the MEK-Pocket: Can Current MEK Kinase Inhibitors Be Utilized to Synthesize Novel Type III NCKIs? Does the MEK-Pocket Exist in Kinases Other than MEK? (2009) Bioorg. Med. Chem. Lett, 19, pp. 226-229. , 19019675
dc.relation.referencesMorris, G.M., Ruth, H., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., Software News and Updates AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility (2009) J. Comput. Chem, 30, pp. 2785-2791. , 19399780
dc.relation.referencesTrott, O., Olson, A.J., AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading (2009) J. Comput. Chem, 31, pp. 455-461. , 19499576
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem