Show simple item record

dc.contributor.authorVergara J.M
dc.contributor.authorCorrea J.D
dc.contributor.authorKoverga A.A
dc.contributor.authorFlórez E.
dc.date.accessioned2023-10-24T19:24:20Z
dc.date.available2023-10-24T19:24:20Z
dc.date.created2023
dc.identifier.issn3603199
dc.identifier.urihttp://hdl.handle.net/11407/7929
dc.description.abstractThe adsorption of single H atom and H2 on blue phosphorene monolayer with and without Pt atom adsorbed on the surface has been investigated using density functional theory with the Perdew-Burke-Ernzerhof exchange correlation functional. With H adsorption energy as a descriptor, catalytic activity of evaluated systems for hydrogen evolution reaction was estimated. Obtained results evidence the impact of Pt atom on fundamental properties of the blue phosphorene monolayer such as its electronic structure, work function and charge distribution in the system. As the result catalytic activity toward hydrogen evolution reaction is affected as well. These data, potentially, can be a useful basis for designing and developing novel functional materials with predetermined catalytic properties. © 2022 Hydrogen Energy Publications LLCeng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85145738907&doi=10.1016%2fj.ijhydene.2022.11.347&partnerID=40&md5=ee8d8ce03d700650d4860d99f6ff68c3
dc.sourceInt J Hydrogen Energy
dc.sourceInternational Journal of Hydrogen Energyeng
dc.subjectBlue phosphoreneeng
dc.subjectDFTeng
dc.subjectHEReng
dc.subjectPlatinumeng
dc.titleImpact of single Pt atom adsorption on fundamental properties of blue phosphorene and its activity toward hydrogen evolution reactioneng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1016/j.ijhydene.2022.11.347
dc.relation.citationvolume48
dc.relation.citationissue33
dc.relation.citationstartpage12321
dc.relation.citationendpage12332
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationVergara, J.M., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationKoverga, A.A., Department of Chemistry, Division of Fundamental Sciences (IEFQ), Technological Institute of Aeronautics (ITA), São Jose dos Campos, São Paulo CEP:12228-900, Brazil
dc.affiliationFlórez, E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesPera-Titus, M., Porous inorganic membranes for CO2capture: present and prospects (2014) Chem Rev, 114 (2), pp. 1413-1492
dc.relation.referencesConway, B.E., Bockris, J.O., Electrolytic hydrogen evolution kinetics and its relation to the electronic and adsorptive properties of the metal (1957) J Chem Phys, 26 (3), pp. 532-541
dc.relation.referencesTrasatti, S., Work function, electronegativity, and electrochemical behaviour of metals (1972) J Electroanal Chem Interfacial Electrochem, 39 (1), pp. 163-184
dc.relation.referencesSku´lason, E., Tripkovic, V., Bjorketun, M.E., Gudmundsd´ottir, S., Karlberg, G., Rossmeisl, J., Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations (2010) J Phys Chem C, 114 (42), pp. 18182-18197
dc.relation.referencesMcCrum, I.T., Koper, M., The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum (2020) Nat Energy, 5 (11), pp. 891-899
dc.relation.referencesCheng, N., Stambula, S., Wang, D., Banis, M.N., Liu, J., Riese, A., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction (2016) Nat Commun, 7 (1), pp. 1-9
dc.relation.referencesBockris, J., Ammar, I., Huq, A., The mechanism of the hydrogen evolution reaction on platinum, silver and tungsten surfaces in acid solutions (1957) J Phys Chem A, 61 (7), pp. 879-886
dc.relation.referencesZheng, Y., Jiao, Y., Zhu, Y., Li, L.H., Han, Y., Chen, Y., Hydrogen evolution by a metal-free electrocatalyst (2014) Nat Commun, 5 (1), pp. 1-8
dc.relation.referencesZeng, L., Li, G., Zhang, S., Xiao, S., Zhao, N., Chen, B.H., Highly dispersed platinum on LaNi nanoparticles/nanoporous carbon for highly efficient electrocatalyic hydrogen evolution (2022) Int J Hydrogen Energy, 47 (51), pp. 21690-21700
dc.relation.referencesVasilchenko, D., Zhurenok, A., Saraev, A., Gerasimov, E., Cherepanova, S., Kovtunova, L., Platinum deposition onto g-C3N4 with using of labile nitratocomplex for generation of the highly active hydrogen evolution photocatalysts (2022) Int J Hydrogen Energy, 47 (21), pp. 11326-11340
dc.relation.referencesAkter, A., Pietras, J., Gopalan, S., Heavily neodymium doped ceria as an effective barrier layer in solid oxide electrochemical cells (2022) Int J Hydrogen Energy, 47 (78), pp. 33429-33438
dc.relation.referencesKoverga, A.A., Flórez, E., Jimenez-Orozco, C., Rodriguez, J.A., Not all platinum surfaces are the same: effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction (2021) Electrochim Acta, 368
dc.relation.referencesBhimanapati, G.R., Lin, Z., Meunier, V., Jung, Y., Cha, J., Das, S., Recent advances in two-dimensional materials beyond graphene (2015) ACS Nano, 9 (12), pp. 11509-11539
dc.relation.referencesWang, L., Hu, P., Long, Y., Liu, Z., He, X., Recent advances in ternary two-dimensional materials: synthesis, properties and applications (2017) J Mater Chem, 5 (44), pp. 22855-22876
dc.relation.referencesGlavin, N.R., Rao, R., Varshney, V., Bianco, E., Apte, A., Roy, A., Emerging applications of elemental 2D materials (2020) Adv Mater, 32 (7)
dc.relation.referencesJeong, G.H., Sasikala, S.P., Yun, T., Lee, G.Y., Lee, W.J., Kim, S.O., Nanoscale assembly of 2D materials for energy and environmental applications (2020) Adv Mater, 32 (35)
dc.relation.referencesShifa, T.A., Wang, F., Liu, Y., He, J., Heterostructures based on 2D materials: a versatile platform for efficient catalysis (2019) Adv Mater, 31 (45)
dc.relation.referencesAo, K.L., Shao, Y., Chan, I.N., Shi, X., Kawazoe, Y., Yang, M., Design of novel pentagonal 2D transitional-metal sulphide monolayers for hydrogen evolution reaction (2020) Int J Hydrogen Energy, 45 (32), pp. 16201-16209
dc.relation.referencesQin, B., Zhang, Q., Li, Y.H., Yang, G., Peng, F., Formation of lattice-dislocated zinc oxide via anodic corrosion for electrocatalytic Co2reduction to syngas with a potential-dependent CO: H2ratio (2020) ACS Appl Mater Interfaces, 12 (27), pp. 30466-30473
dc.relation.referencesWang, E., Zhang, B., Zhou, J., Sun, Z., High catalytic activity of MBenes supported single atom catalysts for oxygen reduction and oxygen evolution reaction (2022) Appl Surf Sci, 604
dc.relation.referencesRen, Y., Zhai, Q., Wang, B., Hu, L., Ma, Y., Dai, Y., Synergistic Adsorption Electrocatalysis of 2D/2D heterostructure toward high performance Li-S batteries (2022) Chem Eng J, 439
dc.relation.referencesJin, H., Yu, H., Li, H., Davey, K., Song, T., Paik, U., MXene analogue: a 2D nitridene solid solution for high-rate hydrogen production (2022), Angewandte Chemie International Edition
dc.relation.referencesLu, Y., Zhong, H., Li, J., Dominic, A.M., Hu, Y., Gao, Z., Sp-carbon incorporated conductive metal-organic framework as photocathode for photoelectrochemical hydrogen generation (2022) Angew Chem Int Ed
dc.relation.referencesHu, R., Jiang, H., Xian, J., Mi, S., Wei, L., Fang, G., Microwave-pulse sugarblowing assisted synthesis of 2D transition metal carbides for sustainable hydrogen evolution (2022) Appl Catal B Environ, 317
dc.relation.referencesPang, J., Bachmatiuk, A., Yin, Y., Trzebicka, B., Zhao, L., Fu, L., Applications of phosphorene and black phosphorus in energy conversion and storage devices (2018) Adv Energy Mater, 8 (8)
dc.relation.referencesYang, A., Wang, D., Wang, X., Zhang, D., Koratkar, N., Rong, M., Recent advances in phosphorene as a sensing material (2018) Nano Today, 20, pp. 13-32
dc.relation.referencesZhang, W., Zhang, K., Wu, X., Enhanced catalytic hydrogen evolution reaction in phosphorene nanosheet via cobalt intercalation (2019) Chin J Chem Phys, 32 (5), p. 572
dc.relation.referencesSrivastava, R., Nouseen, S., Chattopadhyay, J., Woi, P.M., Son, D.N., Bastakoti, B.P., Recent advances in electrochemical water splitting and reduction of CO2into green fuels on 2D phosphorene-based catalyst (2021) Energy Technol, 9 (1)
dc.relation.referencesDinh, K.N., Zhang, Y., Zhu, J., Sun, W., Phosphorene-based electrocatalysts (2020) Chem–Eur J, 26 (29), pp. 6437-6446
dc.relation.referencesCai, Y., Gao, J., Chen, S., Ke, Q., Zhang, G., Zhang, Y.W., Design of phosphorene for hydrogen evolution performance comparable to platinum (2019) Chem Mater, 31 (21), pp. 8948-8956
dc.relation.referencesShao, L., Sun, H., Miao, L., Chen, X., Han, M., Sun, J., Facile preparation of NH2-functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction (2018) J Mater Chem, 6 (6), pp. 2494-2499
dc.relation.referencesWu, Q., Liang, M., Zhang, S., Liu, X., Wang, F., Development of functional black phosphorus nanosheets with remarkable catalytic and antibacterial performance (2018) Nanoscale, 10 (22), pp. 10428-10435
dc.relation.referencesWu, T., Ma, Y., Qu, Z., Fan, J., Li, Q., Shi, P., Black phosphorus–graphene heterostructure-supported Pd nanoparticles with superior activity and stability for ethanol electro-oxidation (2019) ACS Appl Mater Interfaces, 11 (5), pp. 5136-5145
dc.relation.referencesBai, L., Wang, X., Tang, S., Kang, Y., Wang, J., Yu, Y., Black phosphorus/platinum heterostructure: a highly efficient photocatalyst for solar-driven chemical reactions (2018) Adv Mater, 30 (40)
dc.relation.referencesWang, X., Bai, L., Lu, J., Zhang, X., Liu, D., Yang, H., Rapid activation of platinum with black phosphorus for efficient hydrogen evolution (2019) Angew Chem, 131 (52), pp. 19236-19242
dc.relation.referencesKovalska, E., Luxa, J., Melle-Franco, M., Wu, B., Marek, I., Roy, P.K., Single step synthesis of platinoid-decorated phosphorene: perspectives for catalysis, gas sensing, and energy storage (2020) ACS Appl Mater Interfaces, 12 (45), pp. 50516-50526
dc.relation.referencesGan, Y., Xue, X.X., Jiang, X.X., Xu, Z., Chen, K., Yu, J.F., Chemically modified phosphorene as efficient catalyst for hydrogen evolution reaction (2019) J Phys Condens Matter, 32 (2)
dc.relation.referencesLu, J., Zhang, X., Liu, D., Yang, N., Huang, H., Jin, S., Modulation of phosphorene for optimal hydrogen evolution reaction (2019) ACS Appl Mater Interfaces, 11 (41), pp. 37787-37795
dc.relation.referencesWang, M., Song, R., Zhang, X., Liu, G., Xu, S., Xu, Z., Defects engineering promotes the electrochemical hydrogen evolution reaction property of phosphorene surface (2021) Int J Hydrogen Energy, 46 (2), pp. 1913-1922
dc.relation.referencesLiu, F., Huang, Z., Liu, H., Liao, Y., Qi, X., Zhong, J., Strain modulation of black phosphorene for the hydrogen evolution reaction activity (2021) Phys Status Solidi, 258 (11)
dc.relation.referencesVishnoi, P., Gupta, U., Pandey, R., Rao, C.N., Stable functionalized phosphorenes with photocatalytic HER activity (2019) J Mater Chem, 7 (12), pp. 6631-6637
dc.relation.referencesLiu, D., Wang, J., Lu, J., Ma, C., Huang, H., Wang, Z., Direct synthe sis of metal-doped phosphorene with enhanced electrocatalytic hydrogen evolution (2019) Small Methods, 3 (7)
dc.relation.referencesZhu, Z., Tom´anek, D., Semiconducting layered blue phosphorus: a computational study (2014) Phys Rev Lett, 112 (17)
dc.relation.referencesZhang, W., Enriquez, H., Tong, Y., Bendounan, A., Kara, A., Seitsonen, A.P., Epitaxial synthesis of blue phosphorene (2018) Small, 14 (51)
dc.relation.referencesZhang, J.L., Zhao, S., Sun, S., Ding, H., Hu, J., Li, Y., Synthesis of monolayer blue phosphorus enabled by silicon intercalation (2020) ACS Nano, 14 (3), pp. 3687-3695
dc.relation.referencesSun, M., Chou, J.P., Hu, A., Schwingenschlogl, U., Point defects in blue phosphorene (2019) Chem Mater, 31 (19), pp. 8129-8135
dc.relation.referencesSwaroop, R., Ahluwalia, P., Tankeshwar, K., Kumar, A., Ultra-narrow blue phosphorene nanoribbons for tunable optoelectronics (2017) RSC Adv, 7 (5), pp. 2992-3002
dc.relation.referencesJu, L., Dai, Y., Wei, W., Liang, Y., Huang, B., Potential of one-dimensional blue phosphorene nanotubes as a water splitting photocatalyst (2018) J Mater Chem, 6 (42), pp. 21087-21097
dc.relation.referencesCheng, Y., Song, Y., Zhang, Y., The doping and oxidation of 2D black and blue phosphorene: a new photocatalyst for nitrogen reduction driven by visible light (2019) Phys Chem Chem Phys, 21 (44), pp. 24449-24457
dc.relation.referencesMaibam, A., Das, S.K., Samal, P.P., Krishnamurty, S., Enhanced photocatalytic properties of a chemically modified blue phosphorene (2021) RSC Adv, 11 (22), pp. 13348-13358
dc.relation.referencesXiao, Y., Wang, J., Wang, Y., Zhang, W., A new promising catalytic activity on blue phosphorene nitrogen-doped nanosheets for the ORR as cathode in nonaqueous Li–air batteries (2019) Appl Surf Sci, 488, pp. 620-628
dc.relation.referencesLi, C., Xu, Y., Sheng, W., Yin, W.J., Nie, G.Z., Ao, Z., A promising blue phosphorene/C2N van der Waals type-II heterojunction as a solar photocatalyst: a first-principles study (2020) Phys Chem Chem Phys, 22 (2), pp. 615-623
dc.relation.referencesWang, B.J., Li, X.H., Zhao, R., Cai, X.L., Yu, W.Y., Li, W.B., Electronic structures and enhanced photocatalytic properties of blue phosphorene/BSe van der Waals heterostructures (2018) J Mater Chem, 6 (19), pp. 8923-8929
dc.relation.referencesMaibam, A., Chakraborty, D., Joshi, K., Krishnamurty, S., Exploring edge functionalised blue phosphorene nanoribbons as novel photocatalysts for water splitting (2021) New J Chem, 45 (7), pp. 3570-3580
dc.relation.referencesZhu, J., Cai, L., Yin, X., Wang, Z., Zhang, L., Ma, H., Enhanced elec trocatalytic hydrogen evolution activity in single-atom Pt-decorated VS2nanosheets (2020) ACS Nano, 14 (5), pp. 5600-5608
dc.relation.referencesKresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set (1996) Phys Rev B, 54 (16)
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys Rev Lett, 77 (18), p. 3865
dc.relation.referencesMonkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations (1976) Phys Rev B, 13 (12), p. 5188
dc.relation.referencesGrimme, S., Antony, J., Ehrlich, S., Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu (2010) J Chem Phys, 132 (15)
dc.relation.referencesNørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., Trends in the exchange current for hydrogen evolution (2005) J Electrochem Soc, 152 (3), p. J23
dc.relation.referencesSun, X., Luan, S., Shen, H., Lei, S., Effect of metal doping on carbon monoxide adsorption on phosphorene: a first-principles study (2018) Superlattice Microst, 124, pp. 168-175
dc.relation.referencesKulish, V.V., Malyi, O.I., Persson, C., Wu, P., Adsorption of metal adatoms on single-layer phosphorene (2015) Phys Chem Chem Phys, 17 (2), pp. 992-1000
dc.relation.referencesSantos, E., Quaino, P., Schmickler, W., Theory of electrocatalysis: hydrogen evolution and more (2012) Phys Chem Chem Phys, 14 (32), pp. 11224-11233
dc.relation.referencesQuaino, P., Santos, E., Soldano, G., Schmickler, W., Recent progress in hydro gen electrocatalysis (2011) Advances in Physical Chemistry, 2011
dc.relation.referencesSihag, A., Xie, Z.L., Thang, H.V., Kuo, C.L., Tseng, F.G., Dyer, M.S., DFT insights into comparative hydrogen adsorption and hydrogen spillover mechanisms of Pt4/graphene and Pt4/anatase (101) surfaces (2019) J Phys Chem C, 123 (42), pp. 25618-25627
dc.relation.referencesAmbrusi, R., Orazi, V., Marchetti, J., Juan, A., Pronsato, M., Hydrogen storage by spillover on Ni4cluster embedded in three vacancy graphene. A DFT and dynamics study (2022) J Phys Chem Solid, 167
dc.relation.referencesMoyal, A.M., Paz-Tal, O., Ben-Yehuda, E., Moretto, P., Bielewski, M., Napolitano, E., Insights on hydrogen spillover on carbonaceous supports (2022) Nanoscale, 14 (25), pp. 9068-9077
dc.relation.referencesZheng, J., Sheng, W., Zhuang, Z., Xu, B., Yan, Y., Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy (2016) Sci Adv, 2 (3)
dc.relation.referencesBhowmik, T., Kundu, M.K., Barman, S., Palladium nanoparticle–graphitic carbon nitride porous synergistic catalyst for hydrogen evolution/oxidation reactions over a broad range of pH and correlation of its catalytic activity with measured hydrogen binding energy (2016) ACS Catal, 6 (3), pp. 1929-1941
dc.relation.referencesTian, X., Zhao, P., Sheng, W., Hydrogen evolution and oxidation: mechanistic studies and material advances (2019) Adv Mater, 31 (31)
dc.relation.referencesDubouis, N., Grimaud, A., The hydrogen evolution reaction: from material to interfacial descriptors (2019) Chem Sci, 10 (40), pp. 9165-9181
dc.relation.referencesRebollar, L., Intikhab, S., Oliveira, N.J., Yan, Y., Xu, B., McCrum, I.T., Beyond adsorption” descriptors in hydrogen electrocatalysis (2020) ACS Catal, 10 (24), pp. 14747-14762
dc.relation.referencesLedezma-Yanez, I., Wallace, W.D.Z., Sebasti´an-Pascual, P., Climent, V., Feliu, J.M., Koper, M., Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes (2017) Nat Energy, 2 (4), pp. 1-7
dc.relation.referencesMichalsky, R., Zhang, Y.J., Peterson, A.A., Trends in the hydrogen evolution activity of metal carbide catalysts (2014) ACS Catal, 4 (5), pp. 1274-1278
dc.relation.referencesSun, Z., Gao, Z., Zhang, C., Guan, L., Tao, J., Atomically dispersed low-cost transition metals catalyze efficient hydrogen evolution on two-dimensional SnO nanosheets (2021) Int J Hydrogen Energy, 46 (56), pp. 28602-28612
dc.relation.referencesLi, B., Wu, Y., Li, N., Chen, X., Arramel, Z.X., Zhao, X., Jiang, J., Single metal atoms supported on MBenes for robust electrochemical hydrogen evolution (2020) ACS Appl Mater Interfaces, 12 (8), pp. 9261-9267
dc.relation.referencesSong, Z., Yi, J., Qi, J., Zheng, Q., Zhu, Z., Tao, L., Line defects in monolayer TiSe2with adsorption of Pt atoms potentially enable excellent catalytic activity (2022) Nano Res, 15 (5), pp. 4687-4692
dc.relation.referencesShi, J., Chen, T., Sun, X., The effect of heteroatom doping on the active metal site of CoS2for hydrogen evolution reaction (2022) RSC Adv, 12 (27), pp. 17257-17263
dc.relation.referencesAni´cijevi´c, D.D.V., Nikoli´c, V.M., Mařceta-Kaninski, M.P., Pasti, I.A., Is platinum necessary for efficient hydrogen evolution? –DFT study of metal mono- layers on tungsten carbide (2013) Int J Hydrogen Energy, 38 (36), pp. 16071-16079
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record