Show simple item record

dc.contributor.authorRestrepo Carvajal A.H
dc.contributor.authorZuleta Gil A.A
dc.contributor.authorCastaño G J.G
dc.contributor.authorRíos Arbeláez J.M
dc.contributor.authorBedoya E.C
dc.contributor.authorBolívar Osorio F.J
dc.contributor.authorEcheverría F.E.
dc.date.accessioned2023-10-24T19:24:20Z
dc.date.available2023-10-24T19:24:20Z
dc.date.created2023
dc.identifier.issn2728842
dc.identifier.urihttp://hdl.handle.net/11407/7932
dc.description.abstractHigh compressive strength composite materials based on commercially pure titanium were synthesized from Ti Cp grade 2 powders processed by high-energy ball milling using n-hexane as PCA and subsequent sintering in a tubular furnace under argon atmosphere at 1100 °C for 2 h, at atmospheric pressure. The study focused on two main aspects: (i) The effect of speed and milling time on the microstructure and (ii) the relationship between the microstructure and the mechanical resistance of the obtained material. It was found that the presence of TiC was related to the mechanochemical process during milling that occurs under specific conditions of speed and time when enough energy was transferred to the powder coupled with the thermal process at elevated temperature. According to the DSC peaks, the activation energy for the transformations is close to 171 kJ/mol. The microstructure of the sintered samples was characterized by SEM EDS, XRD, and TEM, and the mechanical properties by compression and hardness tests. The high compressive strength of the specimens was attributed to three aspects: (i) the distribution of particles in the sintered samples, (ii) the fine grain size derived from the milling process and (iii) the formation of titanium carbide. A maximum compressive strength of 2.8 GPa makes this material sintered by a simple and low-cost route, very competitive with other advanced Ti composites. © 2023 Elsevier Ltd and Techna Group S.r.l.eng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85148749059&doi=10.1016%2fj.ceramint.2023.02.109&partnerID=40&md5=86d746739bb2ea0e5e6c998f026bee82
dc.sourceCeram Int
dc.sourceCeramics Internationaleng
dc.subjectHigh energy ball millingeng
dc.subjectMechanical propertieseng
dc.subjectSinteringeng
dc.subjectTitanium carbideeng
dc.titleInfluence of the milling conditions on the compressive strength of Ti/TiC composite materials sintered at atmospheric pressureeng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Materialesspa
dc.type.spaArtículo
dc.identifier.doi10.1016/j.ceramint.2023.02.109
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationRestrepo Carvajal, A.H., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, Colombia
dc.affiliationZuleta Gil, A.A., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Sede Medellín, Circular 1 No 70-01, Medellín, Colombia
dc.affiliationCastaño G, J.G., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, Colombia
dc.affiliationRíos Arbeláez, J.M., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, Colombia
dc.affiliationBedoya, E.C., Grupo de Investigación Materiales con Impacto – MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No 30 – 65, Medellín, Colombia
dc.affiliationBolívar Osorio, F.J., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, Colombia
dc.affiliationEcheverría, F.E., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, Colombia
dc.relation.referencesFang, Z.Z., Paramore, J.D., Sun, P., Ravi Chandran, K.S., Zhand, Y., Xia, Y., Cao, F., Free, M., Powder metallurgy of titanium–past, present, and future (2018) Int. Mater. Rev., 63, pp. 407-459
dc.relation.referencesWang, M., Zhou, J., Yin, Y., Nan, H., Xue, P., Tu, Z., Hot deformation behavior of the Ti6Al4V alloy prepared by powder hot isostatic pressing (2017) J. Alloys Compd., 721, pp. 320-332
dc.relation.referencesRomero, C., Yang, F., Bolzoni, L., Fatigue and fracture properties of Ti alloys from powder-based processes – a review (2018) Int. J. Fatig., 117, pp. 407-419
dc.relation.referencesDuan, W., Yin, Y., Zhou, J., Wang, M., Nan, H., Zhang, P., Dynamic research on Ti6Al4V powder HIP densification process based on intermittent experiments (2019) J. Alloys Compd., 771, pp. 489-497
dc.relation.referencesLiu, Y., Chen, L.F., Tang, H.P., Liu, C.T., Liu, B., Huang, B.Y., Design of powder metallurgy titanium alloys and composites (2006) Mater. Sci. Eng., 418, pp. 25-35
dc.relation.referencesGraetz, K., Paras, J.S., Schuh, C.A., Nanostructure stability and nano-phase separation sintering in the titanium–magnesium system (2018) Materialia, 1, pp. 89-98
dc.relation.referencesPhasha, M.J., Bolokang, A.S., Ngoepe, P.E., Solid-state transformation in nanocrystalline Ti induced by ball milling (2010) Mater. Lett., 64, pp. 1215-1218
dc.relation.referencesV Dabhade, V., Mohan, T.R.R., Ramakrishnan, P., Nanocrystalline titanium powders by high energy attrition milling (2007) Powder Technol., 171, pp. 177-183
dc.relation.referencesAvar, B., Ozcan, S., Structural evolutions in Ti and TiO2 powders by ball milling and subsequent heat-treatments (2014) Ceram. Int., 40, pp. 11123-11130
dc.relation.referencesGhosh, B., Pradhan, S.K., Microstructure characterization of nanocrystalline TiC synthesized by mechanical alloying (2010) Mater. Chem. Phys., 120, pp. 537-545
dc.relation.referencesManna, I., Chattopadhyay, P.P., Nandi, P., Banhart, F., Fecht, H.-J., Formation of face-centered-cubic titanium by mechanical attrition (2003) J. Appl. Phys., 93, pp. 1520-1524
dc.relation.referencesHan, G., Lu, X., Xia, Q., Lei, B., Yan, Y., Shang, C.J., Face-centered-cubic titanium - a new crystal structure of Ti in a Ti-8Mo-6Fe alloy (2018) J. Alloys Compd., 748, pp. 943-952
dc.relation.referencesDorofeev, G.A., Lubnin, A.N., Lad'Yanov, V.I., Mukhgalin, V.V., Puskkarev, B.E., Structural and phase transformations during ball milling of titanium in medium of liquid hydrocarbons (2014) Phys. Met. Metallogr., 115, pp. 157-168
dc.relation.referencesHosseini-Gourajoubi, F., Pourabdoli, M., Uner, D., Raygan, S., Effect of process control agents on synthesizing nano-structured 2Mg-9Ni-Y catalyst by mechanical milling and its catalytic effect on desorption capacity of MgH2 (2015) Adv. Powder Technol., 26, pp. 448-453
dc.relation.referencesBolokang, A.S., Motaung, D.E., Arendse, C.J., Muller, T.F.G., Formation of the metastable FCC phase by ball milling and annealing of titanium-stearic acid powder (2015) Adv. Powder Technol., 26, pp. 632-639
dc.relation.referencesLee, W.H., Cheon, Y.W., Kim, K.B., Yoon, Y.H., Jeong, C.H., Kim, Y.H., Van Tyne, C.J., Chang, S.Y., Carbide formation in electric-discharge-sintered Ti3Al compact caused by steric acid in ball-milled Ti and Al powder mixture (2018) Ceram. Int., 44, pp. 19771-19778
dc.relation.referencesJari, K., Andrew, P., Jim, R., Ruuskanen, P., Carbide and hydride formation during mechanical alloying of titanium and aluminium with hexane (1995) Mater. Sci. Eng., 196, pp. 205-211
dc.relation.referencesShial, S.R., Masanta, M., Chaira, D., Recycling of waste Ti machining chips by planetary milling: generation of Ti powder and development of in situ TiC reinforced Ti-TiC composite powder mixture (2018) Powder Technol., 329, pp. 232-240
dc.relation.referencesMereib, D., Chung, U.C., Zakhour, M., Nakhi, M., Doyen, N.T., Bobet, J., Silvain, J.F., Fabrication of in situ Ti/TiC laminated composite material using flakes powder metallurgy (2018) J. Powder Metall. Min., 7, pp. 1-8
dc.relation.referencesKim, Y., Chung, H., Kang, S.L., In situ formation of titanium carbide in titanium powder compacts by gas ± solid reaction (2001) Composites Part A, 32, pp. 31-738
dc.relation.referencesSuzuki, T.S., Nagumo, M., Metastable intermediate phase formation at reaction milling of titanium and n-heptane (1995) Scripta Metall. Mater., 32, pp. 1215-1220
dc.relation.referencesLohse, B.H., Calka, A., Wexler, D., Synthesis of TiC by controlled ball milling of titanium and carbon (2007) J. Mater. Sci., 42, pp. 669-675
dc.relation.referencesMunir, K.S., Zheng, Y., Zhang, D., Lin, J., Li, Y., Wen, C., Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites (2017) Mater. Sci. Eng., 696, pp. 10-25
dc.relation.referencesGuo, Y.Z., Sun, X.Y., Wei, Q., Li, Y.L., Compressive responses of ultrafine-grained titanium within a broad range of strain rates and temperatures (2017) Mech. Mater., 115, pp. 22-33
dc.relation.referencesShen, J., Chen, B., Umeda, J., Kondoh, K., Microstructure and mechanical properties of CP-Ti fabricated via powder metallurgy with non-uniformly dispersed impurity solutes (2018) Mater. Sci. Eng., 716, pp. 1-10
dc.relation.referencesWang, D.W., Zhou, Y.H., Shen, J., Liu, Y., Li, D.F., Zhou, Q., Sha, G., Yan, M., Selective laser melting under the reactive atmosphere: a convenient and efficient approach to fabricate ultrahigh strength commercially pure titanium without sacrificing ductility (2019) Mater. Sci. Eng., 762
dc.relation.referencesLiu, Y., Li, K., Luo, T., Song, M., Wu, H., Xiao, J., Tan, Y., Tang, H., Powder metallurgical low-modulus Ti – Mg alloys for biomedical applications (2015) Mater. Sci. Eng. C, 56, pp. 241-250
dc.relation.referencesCalverta, M.J.E.L., Knowlesb, A.J., Pope, J.J., Dye, D., Jackson, M., Novel high strength titanium-titanium composites produced using field-assisted sintering technology (FAST) (2019) Scripta Mater., 159, pp. 51-57
dc.relation.referencesRahman, K.M., Vorontsov, V.A., Flitcroft, S.M., Dye, D., A high strength Ti–SiC metal matrix composite (2017) Adv. Eng. Mater., 19, pp. 3-8
dc.relation.referencesFruhauf, J.B., Roger, J., Dezellus, O., Gourdet, S., Karnatak, N., Peillon, N., Sounier, S., Desrayaud, C., Microstructural and mechanical comparison of Ti + 15%TiCp composites prepared by free sintering, HIP and extrusion (2012) Mater. Sci. Eng., 554, pp. 22-32
dc.relation.referencesKissinger, H.E., Variation of peak temperature with heating rate in differential thermal analysis (1956) J. Res. Natl. Bur. Stand., 57, p. 216
dc.relation.referencesKissinger, H.E., Reaction kinetics in differential thermal analysis (1957) Anal. Chem., 29, pp. 1702-1706
dc.relation.referencesStandard Test Methods for Rockwell Hardness of Metallic Materials (2002)
dc.relation.referencesRestrepo, A.H., Rios, J.M., Arango, F., Correa, E., Zuleta, A.A., Valencia-Escobar, A., Bolivar, F.J., Echaverría, F.E., Characterization of titanium powders processed in n-hexane by high energy ball milling (2020) Int. J. Adv. Manuf. Technol., 110, pp. 1681-1690
dc.relation.referencesPratap, A., Rao, T.L.S., Lad, K.N., Dhurandhar, H.D., Kinetics of crystallization of titanium based binary and ternary amorphous alloys (2007) J. Non-Cryst. Solids, 353, pp. 2346-2349
dc.relation.referencesSung, Y.M., Park, J.S., Kim, T.G., Anatase phase formation kinetics in Ti and TiOx nanoparticles produced by gas-phase condensation (2012) J. Non-Cryst. Solids, 358, pp. 182-187
dc.relation.referencesAzarniya, A., Salatin, F., Eskandaripoor, M.R., Rasooli, A., A kinetic study on the mechanism of hydrogen evolution in Ni-P coated titanium hydride powder (2015) Adv. Powder Technol., 26, pp. 259-266
dc.relation.referencesVasanthakumar, K., Ghosh, S., Koundinya, N.T.B.N., Ramaprabhu, S., Bakshi, S.R., Synthesis and mechanical properties of TiCx and Ti(C,N)reinforced Titanium matrix in situ composites by reactive spark plasma sintering (2019) Mater. Sci. Eng., 759, pp. 30-39
dc.relation.referencesGarbiec, D., Laptev, A.M., Leshchynsky, V., Wisniewska, M., Figiel, P., Biedunkiewicz, A., Siwak, P., Herrmann, M., Spark plasma sintering of WC-Ti powder mixtures and properties of obtained composites (2022) J. Eur. Ceram. Soc., 42, pp. 2039-2047
dc.relation.referencesFan, K., Zhang, F., Shang, C., Saba, F., Yu, J., Mechanical properties and strengthening mechanisms of titanium matrix nanocomposites reinforced with onion-like carbons (2020) Composer Part A Appl. Sci. Manuf., 132
dc.relation.referencesMunir, K.S., Li, Y., Lin, J., Wen, C., Interdependencies between graphitization of carbon nanotubes and strengthening mechanisms in titanium matrix composites (2018) Materialia, 3, pp. 122-138
dc.relation.referencesDelogu, F., Takacs, L., Mechanochemistry of Ti-C powder mixtures (2014) Acta Mater., 80, pp. 435-444
dc.relation.referencesJia, H., Zhang, Z., Qi, Z., Liu, G., Bian, X., Formation of nanocrystalline TiC from titanium and different carbon sources by mechanical alloying (2009) J. Alloys Compd., 472, pp. 97-103
dc.relation.referencesjiang, H.S.C.J.Q., Lim, T.S., Kim, Y.J., Kim, B.K., In situ formation of TiC-(Ti-6AI-4V) composites (1996) Mater. Sci. Technol., 12, pp. 362-365
dc.relation.referencesPopov, V.A., Shelekhov, E.V., Prosviryakov, A.S., Presniakov, M.Y., Senatulin, B.R., Kotov, A.D., Khomutovl, M.G., Particulate metal matrix composites development on the basis of in situ synthesis of TiC reinforcing nanoparticles during mechanical alloying (2017) J. Alloys Compd., 707, pp. 365-370
dc.relation.referencesGüler, Ö., Bağci, N., A short review on mechanical properties of graphene reinforced metal matrix composites (2020) J. Mater. Res. Technol., 9, pp. 6808-6833
dc.relation.referencesSrinivasan, S., Chen, S.R., Schwarz, R.B., Synthesis of A1/A13Ti two-phase alloys by mechanical alloying (1992) High Temp. Aluminides and Inter., 153, pp. 691-695
dc.relation.referencesMachlin, E., An Introduction to Aspects of Thermodynamics and Kinetics Relevant to Materials Science (2010), Elsevier
dc.relation.referencesArvieu, C., Manaud, J.P., Quenisset, J.M., Interaction between titanium and carbon at moderate temperatures (2004) J. Alloys Compd., 368, pp. 116-122
dc.relation.referencesLong, Y., Guo, W.J., Li, Y., Bimodal-grained Ti fabricated by high-energy ball milling and spark plasma sintering (2016) Trans. Nonferrous Met. Soc. China (English Ed., 26, pp. 1170-1175
dc.relation.referencesChoe, H., Abkowitz, S., Abkowitz, S.M., Dunand, D.C., Mechanical properties of Ti-W alloys reinforced with TiC particles (2008) Mater. Sci. Eng., 485, pp. 703-710
dc.relation.referencesZhang, Y., Chu, K., He, S., Wang, B., Zhu, W., Ren, F., Fabrication of high strength, antibacterial and biocompatible Ti-5Mo-5Ag alloy for medical and surgical implant applications (2020) Mater. Sci. Eng. C, 106
dc.relation.referencesSengupta, B., Shekhar, S., Kulkarni, K.N., A novel ultra-high strength and low-cost as-cast titanium alloy (2017) Mater. Sci. Eng., 696, pp. 478-481
dc.relation.referencesChaudhari, R., Bauri, R., Microstructure and mechanical properties of titanium processed by spark plasma sintering (SPS) (2014) Metallogr. Microstruct. Anal., 3, pp. 30-35
dc.relation.referencesMiklaszewski, A., Garbiec, D., Niespodziana, K., Sintering behavior and microstructure evolution in cp-titanium processed by spark plasma sintering (2018) Adv. Powder Technol., 29, pp. 50-57
dc.relation.referencesAli, K.S., Karunanithi, R., Prashanth, M., Sivasakaran, S., Subramanian, B., Jailani, H.S., Structure and mechanical properties of in-situ synthesized α-Ti/TiO2/TiC hybrid composites through mechanical milling and spark plasma sintering (2022) Ceram. Int., 48, pp. 11215-11227
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record