REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine-Learning-Based Combined Path Loss and Shadowing Model in LoRaWAN for Energy Efficiency Enhancement

Thumbnail
Share this
Date
2023
Author
Gonzalez-Palacio M
Tobon-Vallejo D
Sepulveda-Cano L.M
Rua S
Le L.B.

Citación

       
TY - GEN T1 - Machine-Learning-Based Combined Path Loss and Shadowing Model in LoRaWAN for Energy Efficiency Enhancement Y1 - 2023 UR - http://hdl.handle.net/11407/7937 PB - Institute of Electrical and Electronics Engineers Inc. AB - ER - @misc{11407_7937, author = {}, title = {Machine-Learning-Based Combined Path Loss and Shadowing Model in LoRaWAN for Energy Efficiency Enhancement}, year = {2023}, abstract = {}, url = {http://hdl.handle.net/11407/7937} }RT Generic T1 Machine-Learning-Based Combined Path Loss and Shadowing Model in LoRaWAN for Energy Efficiency Enhancement YR 2023 LK http://hdl.handle.net/11407/7937 PB Institute of Electrical and Electronics Engineers Inc. AB OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
Many practical Internet of Things (IoT) applications require deploying End Nodes (ENs) in hard-to-access places where replacing batteries is difficult or impossible. As a result, the ENs demand high energy efficiency. Long Range Wide Area Network (LoRaWAN) is an IoT protocol that aims to achieve low energy consumption. However, the energy consumption in LoRaWAN is related to transmission power, which can be set mainly based on path loss and shadow fading modeling and link budget analysis. Hence, appropriately setting this transmission power parameter saves energy and guarantees reliable communication links. Traditional path loss and shadow fading modeling and transmission power setting do not consider the variations caused by different environmental effects. In this work, we show via real-life data analysis that path loss and shadow fading depend on environmental variables. We propose Machine Learning models to calculate the empirical path loss and shadow fading, which is used to set the transmission power to save ENs’ energy. Our models include the effects of distance, frequency, temperature, relative humidity, barometric pressure, particulate matter, and Signal to Noise Ratio. Specifically, the models are based on Multiple Linear Regression, Support Vector Regression, Random Forests, and Artificial Neural Networks, exhibiting a Root Mean Square Error (RMSE) up to 1.566 dB and R up to 0.94. For energy saving, the developed models serve to set the transmission power and Spreading Factor based on the Adaptative Data Rate (ADR) algorithm principles, which reduces the link margin saving energy up to 43% compared with the traditional ADR protocol. IEEE
URI
http://hdl.handle.net/11407/7937
Collections
  • Indexados Scopus [2005]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com