Mostrar el registro sencillo del ítem

dc.contributor.authorRoldán M
dc.contributor.authorMontoya R.D
dc.contributor.authorRios J.D
dc.contributor.authorOsorio A.F.
dc.date.accessioned2023-10-24T19:24:23Z
dc.date.available2023-10-24T19:24:23Z
dc.date.created2023
dc.identifier.issn298018
dc.identifier.urihttp://hdl.handle.net/11407/7940
dc.description.abstractThe understanding of the ocean waves during extreme hurricane conditions is important for risk analysis in coastal areas, the design of maritime works, the evaluation of impacts on ecosystems, navigation, among many other scientific and engineering applications. Although the Reanalysis databases have improved the quality of the wind fields during the occurrence of those hurricanes for which more data is available, they have been characterized by greatly underestimating the magnitude of the wind speed. In this context, parametric models emerge as an alternative capable of meeting the need for sufficient spatial and temporal resolution, but with a significantly lower computational cost. In this research, a new asymmetric parametric model is presented that presents better results, by incorporating a series of equations that allows improving the asymmetry and the magnitude of maximum wind speed around the eye of the hurricane. This new work presents a broader and more robust validation of this model proposed for the Gulf of Mexico, in which: I) the winds of multiple hurricanes are compared, with several trajectories and categories, with speed and direction records from NOAA in-situ buoys, II) The spatial patterns obtained are compared with the wind fields available in Heng
dc.description.abstractwind considered the best existing database, III) the wind fields are employed as forcing of the WAVEWATCH III wave model and the results are used to validated scalar parameters and directional spectrum against information from NOAA in-situ buoys, IV) a detailed analysis is made of the changes suffered by the directional spectrum of the waves when it is forced with the results of the parametric wind model, versus the spectra recorded by NOAA buoys and, V) all previous results derived from the parametric wind model are compared with the information available in the ERA5 reanalysis database and is discussed about it. The results found show that the parametric model is capable of improving the magnitude of the maximum wind speed around the eye, as well as the directional dispersion of energy in the three-dimensional spectrum of the simulated waves under hurricane conditions. © 2023eng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85153878562&doi=10.1016%2fj.oceaneng.2023.114508&partnerID=40&md5=4f7d36778deec4888b82037d3a19e184
dc.sourceOcean Eng.
dc.sourceOcean Engineeringeng
dc.subjectHurricaneeng
dc.subjectHurricane asymmetryeng
dc.subjectParametric wind modeleng
dc.subjectWind fieldeng
dc.titleModified parametric hurricane wind model to improve the asymmetry in the region of maximum windseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Civilspa
dc.type.spaArtículo
dc.identifier.doi10.1016/j.oceaneng.2023.114508
dc.relation.citationvolume280
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationRoldán, M., Universidad de Medellín, Facultad de ingeniería, Colombia
dc.affiliationMontoya, R.D., Universidad de Medellín, Grupo de Investigación en ingeniería Ingeniería Civil GICI, Grupo de investigación en Calidad del agua y Modelación Hídrica GICAMH, Universidad de Medellín, Carrera 87 N° 30 – 65, Medellín, Colombia
dc.affiliationRios, J.D., Universidad Nacional de Colombia - Sede Medellín., Facultad de Minas., Grupo OCEANICOS., Cr 80 # 65-223., Medellin, Colombia
dc.affiliationOsorio, A.F., Universidad Nacional de Colombia - Sede Medellín., Facultad de Minas., Grupo OCEANICOS., Cr 80 # 65-223., Medellin, Colombia, Center of Excellence in Marine Science, CEMARIN, Colombia
dc.relation.referencesAdams, C., Witt, E.C., Wang, J., Shaver, D.K., Summers, D., Filali-Meknassi, Y., Anderson, N., Chemical quality of depositional sediments and associated soils in New Orleans and the Louisiana peninsula following Hurricane Katrina (2007) Environ. Sci. Technol., 41 (10), pp. 3437-3443
dc.relation.referencesAppendini, C.M., Pedrozo-Acuña, A., Meza-Padilla, R., Torres-Freyermuth, A., Cerezo-Mota, R., López-González, J., Ruiz-Salcines, P., On the role of climate change on wind waves generated by tropical cyclones in the Gulf of Mexico (2017) Coast Eng. J., 59. , 02
dc.relation.referencesArdhuin, F., Chapron, B., Collard, F., Observation of swell dissipation across oceans (2009) Geophys. Res. Lett., 36 (6), pp. 1-5
dc.relation.referencesArdhuin, F., Rogers, E., Babanin, A., Filipot, J.-F., Magne, R., Roland, A., Van Der Westhuysen, A., Collard, F., Semi-empirical dissipation source functions for ocean waves: part I, definition, calibration and validation (2010) J. Phys. Oceanogr., 40, pp. 1917-1941
dc.relation.referencesInterim Guidance on Hurricane Conditions in the Gulf of Mexico (2007), p. 50. , American Petroleum Institute Washington, DC, USA
dc.relation.referencesBabanin, A.V., Tsagareli, K.N., Young, I.R., Walker, D.J., Numerical investigation of spectral evolution of wind waves. Part II: dissipation term and evolution tests (2010) J. Phys. Oceanogr., 40 (4), pp. 667-683
dc.relation.referencesBennett, V.C., Mulligan, R.P., Hapke, C.J., A numerical model investigation of the impacts of Hurricane Sandy on water level variability in Great South Bay, New York (2018) Continent. Shelf Res., 161, pp. 1-11
dc.relation.referencesBeyramzadeh, M., Siadatmousavi, S.M., Skill assessment of different quadruplet wave-wave interaction formulations in the WAVEWATCH-III model with application to the Gulf of Mexico (2022) Appl. Ocean Res., 127. , 2022
dc.relation.referencesBidlot, J.-R., Present status ofwave forecasting at E.C.M.W.F (2012) ECMWF-workshop on OceanWaves, p. 16. , Shinfield Park, Reading, RG2 9AX United Kingdom
dc.relation.referencesBidlot, J.-R., Janssen, P., Abdalla, S., A Revised Formulation of Ocean Wave Dissipation and its Model Impact (2007), European Centre for Medium-RangeWeather Forecasts Shinfield Park, Reading, RG2 9AX, England Technical Report 509
dc.relation.referencesCavaleri, L., Rizzoli, P.M., Wind wave prediction in shallow water: theory and applications (1981) J. Geophys. Res.: Oceans, 86 (C11), pp. 10961-10973
dc.relation.referencesCavaleri, L., Sclavo, M., The calibration of wind and wave model data in the mediterranean sea (2006) Coast Eng., 53 (7), pp. 613-627
dc.relation.referencesCavaleri, L., Alves, J.H.G.M., Ardhuin, F., Babanin, A., Banner, M., Belibassakis, K., Benoit, M., Young, I., Wave modelling - the state of the art (2007) Prog. Oceanogr., 75 (4), pp. 603-674
dc.relation.referencesChalikov, D.V., Belevich, M.Y., One-dimensional theory of the wave boundary layer (1993) Boundary-Layer Meteorol., 63 (1-2), pp. 65-96
dc.relation.referencesChang, D., Amin, S., Emanuel, K., Modeling and parameter estimation of hurricane wind fields with asymmetry (2020) J. Appl. Meteorol. Climatol., 59 (4), pp. 687-705
dc.relation.referencesChen, W.-B., Chen, H., Hsiao, S.-C., Chang, C.-H., Lin, L.-Y., Wind forcing effect on hindcasting of typhoon-driven extreme waves (2019) Ocean. Eng., 188
dc.relation.referencesCruz, A.M., Krausmann, E., Damage to offshore oil and gas facilities following hurricanes Katrina and Rita: an overview (2008) J. Loss Prev. Process. Ind., 21 (6), pp. 620-626
dc.relation.referencesDeppermann, C.E., Notes on the origin and structure of Philippine typhoons (1947) Bull. Am. Meteorol. Soc., pp. 399-404
dc.relation.referencesDonelan, M.A., Babanin, A.V., Young, I.R., Banner, M.L., Wave-Follower field measurements of the wind-input spectral function. Part II: parameterization of the wind input (2006) J. Phys. Oceanogr., 36 (8), pp. 1672-1689
dc.relation.referencesElshinnawy, A.I., Medina, R., González, M., On the influence of wave directional spreading on the equilibrium planform of embayed beaches (2018) Coast Eng., 133, pp. 59-75
dc.relation.referencesGao, J., Luettich, R., Fleming, J., Development and Initial Evaluation of a Generalized Asymmetric Tropical Cyclone Vortex Model in ADCIRC (2013), ADCIRC Users Group Meeting. US Army Corps of Engineers Vicksburg
dc.relation.referencesHasselmann, K.F., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Eake, K., Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP) (1973), Ergaenzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A
dc.relation.referencesHasselmann, S., Hasselmann, K., Allender, J., Barnett, T., Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. part ii: parameterizations of the nonlinear energy transfer for application in wave models (1985) J. Phys. Oceanogr., 15 (11), pp. 1378-1391
dc.relation.referencesHodges, K., Cobb, A., Vidale, P.L., How well are tropical cyclones represented in reanalysis datasets (2017) J. Clim., 30 (14), pp. 5243-5264
dc.relation.referencesHolland, G.J., An analytic model of the wind and pressure profiles in hurricanes (1980) Mon. Weather Rev., 108, pp. 1212-1218
dc.relation.referencesHolland, G., A revised hurricane pressure–wind model (2008) Mon. Weather Rev., 136 (9), pp. 3432-3445
dc.relation.referencesHolland, G.J., Belanger, J.I., Fritz, A., A revised model for radial profiles of hurricane winds (2010) Mon. Weather Rev., 138 (12), pp. 4393-4401
dc.relation.referencesHouston, S.H., Powell, M.D., Observed and modeled wind and water-level response from Tropical Storm Marco (1990) (1994) Weather Forecast., 9 (3), pp. 427-439
dc.relation.referencesHsiao, S.-C., Chen, H., Wu, H.-L., Chen, W.-B., Chang, C.-H., Guo, W.-D., Numerical simulation of large wave heights from super typhoon Nepartak (2016) in the eastern waters of Taiwan (2020) J. Mar. Sci. Eng., 3, p. 217
dc.relation.referencesHu, K., Chen, Q., Kimball, S.K., Consistency in hurricane surface wind forecasting: an improved parametric model (2012) Nat. Hazards, 61 (3), pp. 1029-1050
dc.relation.referencesJanssen, P.A.E.M., Quasi-linear theory of wind-wave generation applied to wave forecasting (1991) J. Phys. Oceanogr., 21 (11), pp. 1631-1642
dc.relation.referencesJanssen, P., The Interaction of Ocean Waves and Wind (2004), Cambridge University Press
dc.relation.referencesJeong, C.K., Panchang, V., Demirbilek, Z., Parametric adjustments to the rankine vortex wind model for Gulf of Mexico hurricanes (2012) J. Offshore Mech. Arctic Eng., 134 (4)
dc.relation.referencesKim, S.Y., Yasuda, T., Mase, H., Wave set-up in the storm surge along open coasts during Typhoon Anita (2010) Coast Eng., 57 (7), pp. 631-642
dc.relation.referencesKnaff, J.A., Zehr, R.M., Reexamination of tropical cyclone wind-pressure relationships (2007) Weather Forecast., 22, pp. 71-88
dc.relation.referencesLashley, C.H., Bricker, J.D., van der Meer, J., Altomare, C., Suzuki, T., Relative magnitude of infragravity waves at coastal dikes with shallow foreshores: a prediction tool (2020) J. Waterw. Port, Coast. Ocean Eng., 146 (5). , 04020034-1
dc.relation.referencesLeckler, F., Ardhuin, F., Filipot, J.F., Mironov, A., Dissipation source terms and whitecap statistics (2013) Ocean Model., 70, pp. 62-74
dc.relation.referencesLin, N., Chavas, D., On hurricane parametric wind and applications in storm surge modeling (2012) J. Geophys. Res. Atmos., 117 (D9)
dc.relation.referencesLin, N., Smith, J.A., Villarini, G., Marchok, T.P., Baeck, M.L., Modeling extreme rainfall, winds, and surge from Hurricane Isabel (2003) (2010) Weather Forecast., 25 (5), pp. 1342-1361
dc.relation.referencesLiu, Q., Babanin, A., Fan, Y., Zieger, S., Guan, C., Moon, I.-J., Numerical simulations of ocean surface waves under hurricane conditions: assessment of existing model performance (2017) Ocean Model., 118, pp. 73-93
dc.relation.referencesLiu, J., Shao, W., Xiang, C., Mei, C., Li, Z., Uncertainties of urban flood modeling: influence of parameters for different underlying surfaces (2020) Environ. Res., 182
dc.relation.referencesMattocks, C., Forbes, C., A real-time, event-triggered storm surge forecasting system for the state of North Carolina (2008) Ocean Model., 25 (3-4), pp. 95-119
dc.relation.referencesMeza-Padilla, R., Appendini, C.M., Pedrozo-Acuña, A., Hurricane-induced waves and storm surge modeling for the Mexican coast (2015) Ocean Dynam., 65 (8), pp. 1199-1211
dc.relation.referencesMontoya, R., Study of the Interactions between Large Scale Climate Phenomena and Waves in the Caribbean Sea: Methodologies to Correct Wind Speed during Average and Hurricane Conditions for Wave Climate Analysis. Phd Thesis (2013), univerisidad nacional de colombia
dc.relation.referencesMontoya, R.D., Arias, A.O., Royero, J.C.O., Ocampo-Torres, F.J., A wave parameters and directional spectrum analysis for extreme winds (2013) Ocean. Eng., 67, pp. 100-118
dc.relation.referencesMontoya, R.D., Menendez, M., Osorio, A.F., Exploring changes in Caribbean hurricane-induced wave heights (2018) Ocean. Eng., 163, pp. 126-135
dc.relation.referencesMoon, I.J., Ginis, I., Hara, T., Tolman, H.L., Wright, C.W., Walsh, E.J., Numerical simulation of sea surface directional wave spectra under hurricane wind forcing (2003) J. Phys. Oceanogr., 33, pp. 1680-1760
dc.relation.referencesMooney, P.A., Mulligan, F.J., Bruyère, C.L., Parker, C.L., Gill, D.O., Investigating the performance of coupled WRF-ROMS simulations of Hurricane Irene (2011) in a regional climate modeling framework (2019) Atmos. Res., 215, pp. 57-74. , 2019 ISSN 0169-8095
dc.relation.referencesNolan, D.S., McNoldy, B.D., Yunge, J., Evaluation of the surface wind field over land in WRF simulations of hurricane wilma (2005). Part I: model initialization and simulation validation (2021) Mon. Weather Rev., 149 (3), pp. 679-695. , https://journals.ametsoc.org/view/journals/mwre/149/3/MWR-D-20-0199.1.xml, Retrieved Nov 27, 2022, from
dc.relation.referencesOuyang, M., Review on modeling and simulation of interdependent critical infrastructure systems (2014) Reliab. Eng. Syst. Saf., 121, pp. 43-60
dc.relation.referencesPanchang, V., Jeong, C.K., Estimation of Extreme Met‐Ocean Conditions for Offshore Engineering Applications (2017), pp. 1-14. , Encyclopedia of Maritime and Offshore Engineering
dc.relation.referencesPeng, M., Xie, L., Pietrafesa, L.J., Tropical cyclone induced asymmetry of sea level surge and fall and its presentation in a storm surge model with parametric wind fields (2006) Ocean Model., 14 (1-2), pp. 81-101
dc.relation.referencesPhadke, A.C., Martino, C.D., Cheung, K.F., Houston, S.H., Modeling of tropical cyclone winds and waves for emergency management (2003) Ocean. Eng., 30 (4), pp. 553-578
dc.relation.referencesPortilla-Yadún, J., Barbariol, F., Benetazzo, A., Cavaleri, L., On the statistical analysis of ocean wave directional spectra (2019) Ocean. Eng., 189
dc.relation.referencesPowell, M.D., Houston, S.H., Hurricane Andrew's landfall in South Florida Part II: surface wind fields and potential real-time applications (1996) Weather Forecast., 11, pp. 329-349
dc.relation.referencesPowell, M.D., Houston, S.H., Surface wind fields of 1995 hurricanes erin, opal, luis, Marilyn, and Roxanne at landfall (1998) Mon. Weather Rev., 126, pp. 1259-1273
dc.relation.referencesPowell, M.D., Houston, S.H., Reinhold, T.A., Hurricane Andrew's landfall in South Florida Part I: Standardizing measurements for documentation of surface wind fields (1996) Weather Forecast., 11, pp. 304-328
dc.relation.referencesPowell, M.D., Houston, S.H., Amat, L.R., Morisseau-Leroy, N., The HRD real-time surface wind analysis system (1998) J. Wind Eng. Ind. Aerod., 77/78, pp. 53-64
dc.relation.referencesPowell, M.D., Murillo, S., Dodge, P., Uhlhorn, E., Reconstruction of hurricane Katrina's wind fields for storm surge and water hindcasting (2010) Ocean Eng., 37, pp. 26-36
dc.relation.referencesRogers, E.W., Babanin, A.V., Wang, D.W., Observation-consistent input and whitecapping dissipation in a model for wind-generated surface waves: description and simple calculations (2012) J. Atmos. Ocean. Technol., 29 (9), pp. 1329-1346
dc.relation.referencesRomanok, K.M., Szabo, Z., Reilly, T.J., Defne, Z., Ganju, N.K., Sediment chemistry and toxicity in Barnegat Bay, New Jersey: pre-and post-Hurricane Sandy, 2012–13 (2016) Mar. Pollut. Bull., 107 (2), pp. 472-488
dc.relation.referencesRuiz-Salcines, P., Salles, P., Robles-Díaz, L., Díaz-Hernández, G., Torres-Freyermuth, A., Appendini, C.M., On the use of parametric wind models for wind wave modeling under tropical cyclones (2019) Water, 11 (10), p. 2044
dc.relation.referencesRuti, P.M., Marullo, S., D'Ortenzio, F., Tremant, M., Comparison of analyzed and measured wind speeds in the perspective of oceanic simulations over the mediterranean basin: analyses, quikscat and buoy data (2008) J. Mar. Syst., 70 (1-2), pp. 33-48
dc.relation.referencesSahoo, B., Jose, F., Bhaskaran, P.K., Hydrodynamic response of Bahamas archipelago to storm surge and hurricane generated waves–A case study for Hurricane Joaquin (2019) Ocean. Eng., 184, pp. 227-238
dc.relation.referencesSchloemer, R.W., Analysis and Synthesis of Hurricane Wind Patterns over Lake Okeechobee, Florida (No. 31) (1954), US Department of Commerce Weather Bureau
dc.relation.referencesSeemanth, M., Bhowmick, S.A., Kumar, R., Sharma, R., Sensitivity analysis of dissipation parameterizations in a third- generation spectral wave model, WAVEWATCH III for Indian Ocean (2016) Ocean. Eng., 124, pp. 252-273
dc.relation.referencesSharma, N., D'Sa, E., Assessment and analysis of quikscat vector wind products for the gulf of Mexico: a long-term and hurricane analysis (2008) Sensors, 8 (3), pp. 1927-1949
dc.relation.referencesSheng, Y., Shao, W., Li, S., Zhang, Y., Yang, H., Zuo, J., Evaluation of typhoon waves simulated by WaveWatch-III model in shallow waters around Zhoushan islands (2019) J. Ocean Univ. China, 18 (2), pp. 1-11
dc.relation.referencesSkandali, D., Lourens, E., Ogink, R.H.M., Calibration of response amplitude operators based on measurements of vessel motions and directional wave spectra (2020) Mar. Struct., 72
dc.relation.referencesTolman, H.L., The numerical model WAVEWATCH: a third generation model for hindcasting of wind waves on tides in shelf seas (1989) Commun. Hydraul. Geotech. Eng.
dc.relation.referencesTolman, H.L., Wind wave propagation in tidal seas (1990) Commun. Hydraul. Geotech. Eng.
dc.relation.referencesTolman, H.L., The influence of unsteady depths and currents of tides on wind wave propagation in shelf seas (1990) J. Phys. Oceanogr., 20
dc.relation.referencesTolman, H., Validation of WAVEWATCH III Version 1.15 for a Global Domain (2002), Environmental Modeling Center Ocean Modeling Branch Technical Report 213
dc.relation.referencesTolman, H.L., Alves, J.H.G., Numerical modeling of wind waves generated by tropical cyclones using moving grids (2005) Ocean Model., 9 (4), pp. 305-323
dc.relation.referencesTolman, H.L., Chalikov, D., Source terms in a third-generation wind wave model (1996) J. Phys. Oceanogr., 26 (11), pp. 2497-2518
dc.relation.referencesUmesh, P.A., Beher, M.R., Performance evaluation of input-dissipation parameterizations in WAVEWATCH III and comparison of wave hindcast with nested WAVEWATCH III-SWAN in the Indian Seas (2020) Ocean. Eng., 202 (15). , 2020
dc.relation.referencesVickery, P.J., Masters, F.J., Powell, M.D., Wadhera, D., Hurricane hazard modeling: the past, present, and future (2009) J. Wind Eng. Ind. Aerod., 97 (7-8), pp. 392-405
dc.relation.referencesVoorrips, A.C., Makin, V.K., Komen, G.J., The influence of atmospheric stratification on the growth of water waves (1995) Boundary-Layer Meteorol., 72 (3), pp. 287-303
dc.relation.referencesWang, D.P., Oey, L.Y., Hindcast of waves and currents in hurricane Katrina (2008) Bull. Am. Meteorol. Soc., 89 (4), pp. 487-496
dc.relation.referencesWilloughby, H.E., Rahn, M.E., Parametric representation of the primary hurricane vortex. Part I: observations and evaluation of the Holland (1980) model (2004) Mon. Weather Rev., 132 (12), pp. 3033-3048
dc.relation.referencesWilloughby, H.E., Darling, R.W.R., Rahn, M.E., Parametric representation of the primary hurricane vortex. Part II: a new family of sectionally continuous profiles (2006) Mon. Weather Rev., 134 (4), pp. 1102-1120
dc.relation.referencesWood, V.T., White, L.W., Willoughby, H.E., Jorgensen, D.P., A new parametric tropical cyclone tangential wind profile model (2013) Mon. Weather Rev., 141 (6), pp. 1884-1909
dc.relation.referencesXie, L., Bao, S., Pietrafesa, L.J., Foley, K., Fuentes, M., A real-time hurricane surface wind forecasting model: formulation and verification (2006) Mon. Weather Rev., 134 (5), pp. 1355-1370
dc.relation.referencesXie, L., Liu, H., Liu, B., Bao, S., A numerical study of the effect of hurricane wind asymmetry on storm surge and inundation (2011) Ocean Model., 36 (1-2), pp. 71-79
dc.relation.referencesYaghoobi-Kalourazi, Siadatmousavi, S.M., Yeganeh-Bakhtiary, A., Felix, J., WAVEWATCH-III source terms evaluation for optimizing hurricane wave modeling: a case study of Hurricane Ivan (2021) Oceanologia, 63, pp. 194-213. , 2021
dc.relation.referencesYoung, I.R., Directional spectra of hurricane wind waves (2006) J. Geophys. Res., 111
dc.relation.referencesZhuo, L., Wang, A., Guo, P., Numerical simulation of sea surface directional wave spectra under typhoon wind forcing Export (2008) J. Hydrodyn., Ser. B, 20 (6), pp. 776-783
dc.relation.referencesZieger, S., Babanin, A.V., Rogers, W.E., Young, I.R., Observation-based source terms in the third-generation wave model WAVEWATCH (2015) Ocean Model., 218, pp. 1-24
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem