Show simple item record

dc.contributor.authorChapuis R.P
dc.contributor.authorDuhaime F
dc.contributor.authorWeber S
dc.contributor.authorMarefat V
dc.contributor.authorZhang L
dc.contributor.authorBlessent D
dc.contributor.authorBouaanani N
dc.contributor.authorPelletier D.
dc.description.abstractGroundwater numerical studies do not include H-convergence tests, contrarily to computational fluid dynamics (CFD) studies. In regional groundwater studies with pumping wells, the grids may exceed 106 nodes. The authors examine whether H-convergence tests can help to calculate the numerical errors made by using large grids with element sizes in the 10–500 m range. First, the differences between numerical and mathematical convergences are explained. Then, a method is proposed that most users may easily implement for their groundwater studies to assess the numerical error linked to the element size, ES, and the aspect ratio, AR. A single problem, forming a simple part of a regional groundwater study, was examined and solved by using many uniform grids. The results show that most regional groundwater studies make errors in the 50–500% range, considering their usual values for ES and AR. The numerical convergence domain, NCD, is shown to be larger than the mathematical convergence domain, MCD. This means that the codes can provide a numerical solution for a large range of ES values, even for many values outside the MCD, which is a risky situation for designers who are unaware of the difference between NCD and MCD and ignore the H-convergence tests. © 2023 Elsevier Ltdeng
dc.publisherElsevier Ltd
dc.sourceComput. Geotech.
dc.sourceComputers and Geotechnicseng
dc.subjectMathematical convergenceeng
dc.subjectNumerical analysiseng
dc.subjectNumerical convergenceeng
dc.titleNumerical convergence does not mean mathematical convergence: Examples of simple saturated steady-state groundwater models with pumping wellseng
dc.publisher.programIngeniería Ambientalspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationChapuis, R.P., Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, P.O. Box 6079, Sta. CV, Montreal (Quebec), H3C 3A7, Canada
dc.affiliationDuhaime, F., Department of Construction Engineering, École de Technologie Supérieure, 1100 Notre-Dame west, Montreal (Quebec), H3C 1K3, Canada
dc.affiliationWeber, S., Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, P.O. Box 6079, Sta. CV, Montreal (Quebec), H3C 3A7, Canada, Department of Construction Engineering, École de Technologie Supérieure, 1100 Notre-Dame west, Montreal (Quebec), H3C 1K3, Canada
dc.affiliationMarefat, V., Geotechnical Engineering Team Leader, BBA, 2200 Boul. Robert-Bourassa, Suite 300, Montreal, QC H3A 2A5, Canada
dc.affiliationZhang, L., College of Construction Engineering, Jilin University, 938 Ximinzhu St., Changchun, 130021, China
dc.affiliationBlessent, D., University of Medellin, Environmental Engineering Program, Medellin, 050026, Colombia
dc.affiliationBouaanani, N., Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, P.O. Box 6079, Sta. CV, Montreal (Quebec), H3C 3A7, Canada
dc.affiliationPelletier, D., Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Sta. CV, Montreal (Quebec), H3C 3A7, Canada
dc.relation.referencesBaliga, B.R., Lokhmanets, I., Generalized Richardson extrapolation procedures for estimating grid-independent numerical solutions (2016) Int. J. Num. Methods Heat & Fluid Flow, 26 (3-4), pp. 1121-1144
dc.relation.referencesBanks, J.W., Aslam, T., Rider, W.J., On sub-linear convergence for linearly degenerate waves in capturing schemes (2008) J. Comput. Phys., 227 (14), pp. 6985-7002
dc.relation.referencesBaptiste, N., Chapuis, R.P., What maximum permeability can be measured with a monitoring well? (2015) Eng. Geol., 184, pp. 111-118
dc.relation.referencesBear, J., Jacobs, M., On the movement of water bodies injected into aquifers (1965) J. Hydrol., 3, pp. 37-57
dc.relation.referencesBrock, J.S., Bounded numerical error estimates for oscillatory convergence of simulation data (2007) AIAA Paper, pp. 2007-4091
dc.relation.referencesBrunner, P., Simmons, C.T., Hydrogeosphere: A fully integrated, physically based hydrological model (2012) Ground Water, 50 (2), pp. 170-176
dc.relation.referencesCelik, I., Li, J., Hu, G., Shaffer, C., Limitations of Richardson extrapolation and some possible remedies (2005) J. Fluids Eng., 127 (4), pp. 795-805
dc.relation.referencesChapuis, R.P., Controlling the quality of ground water parameters: some examples (1995) Can. Geotech. J., 32 (1), pp. 172-177
dc.relation.referencesChapuis, R.P., Numerical modeling of reservoirs or pipes in groundwater seepage (2009) Comp. Geotech., 36 (5), pp. 895-901
dc.relation.referencesChapuis, R.P., Proof of multiplicity of solutions for groundwater seepage in recharged heterogeneous unconfined aquifers (2016) Int. J. Num. Anal. Methods Geomech., 40 (14), pp. 1988-2002
dc.relation.referencesChapuis, R.P., A simple reason explains why it is so difficult to assess groundwater ages and contamination ages (2017) Sci. Total Envir., 593, pp. 109-115
dc.relation.referencesChapuis, R.P., Tracer tests in stratified alluvial aquifers: predictions of effective porosity and longitudinal dispersivity versus field values (2019) Geotech. Test. J., 42 (2), pp. 407-432
dc.relation.referencesChapuis, R.P., Evaluating at three scales the hydraulic conductivity in an unconfined and stratified alluvial aquifer (2021) Geotech. Test. J., 44 (4), pp. 948-970
dc.relation.referencesChapuis, R.P., The physical reasons to have underdamped or oscillating variable-head (slug) tests: A review and a clarification (2022) Geotech. Testing J., 45 (1), pp. 244-279
dc.relation.referencesChapuis, R.P., Aubertin, M., A simplified method to estimate saturated and unsaturated seepage through dikes under steady-state conditions (2001) Can. Geotech. J., 38 (6), pp. 1321-1328
dc.relation.referencesChapuis, R.P., Saucier, A., A leaky aquifer below Champlain Sea clay: Closed–form solutions for natural seepage (2013) Ground Water, 51 (6), pp. 960-967
dc.relation.referencesChapuis, R.P., Chenaf, D., Bussière, B., Aubertin, M., Crespo, R., A user's approach to assess numerical codes for saturated and unsaturated seepage conditions (2001) Can. Geotech. J., 38 (5), pp. 1113-1126
dc.relation.referencesChapuis, R.P., Chenaf, D., Acevedo, N., Marcotte, D., Chouteau, M., Unusual drawdown curves for a pumping test in an unconfined aquifer at Lachenaie, Quebec: Field data and numerical modeling (2005) Can. Geotech. J., 42 (4), pp. 1133-1144
dc.relation.referencesChenaf, D., Chapuis, R.P., Seepage face height, water table position, and well efficiency for steady state (2007) Ground Water, 45 (2), pp. 168-177
dc.relation.referencesChesnaux, R., Molson, J., Chapuis, R.P., An analytical solution for ground water transit time through unconfined aquifers (2005) Ground Water, 43 (4), pp. 511-517
dc.relation.referencesColeman, H.W., Stern, F., Di Mascio, A., Campana, E., The problem with oscillatory behavior in grid convergence studies (2001) J. Fluids Eng., 123 (2), pp. 438-439
dc.relation.referencesDelbar, A., Chapuis, R.P., Tracer tests in a straight uniform flow: New equations considering the distortion of flow lines around the well (2021) J. Cont. Hydrol., 239
dc.relation.referencesDuhaime, F., Chapuis, R.P., A joint analysis of cavity and pore volume changes for pulse tests conducted in soft clay deposits (2014) Int. J. Num. Anal. Meth. Geomech., 38 (9), pp. 903-924
dc.relation.referencesDuhaime, F., Chapuis, R.P., Marefat, V., Benabdallah, E.M., Influence of seasonal hydraulic head changes on slug tests conducted in shallow low-permeability soils (2017) Eng. Geol., 228, pp. 385-394
dc.relation.referencesFala, O., Molson, J., Aubertin, M., Dawood, I., Bussière, B., Chapuis, R.P., A numerical modelling approach to assess long–term unsaturated flow and geochemical transport in a waste rock pile (2013) Int. J. Mining Reclam. Envir., 27 (1), pp. 38-55
dc.relation.referencesFerrandon, J., (1948), Les lois d’écoulement de filtration [The seepage filtration laws]. Le Génie Civil 125 (2), 24–28 (in French). No doi
dc.relation.referencesGoderniaux, P., Brouyère, S., Fowler, H.J., Blenkinsop, S., Therrien, R., Orban, P., Dassargues, A., Large scale surface-subsurface hydrological model to assess climate change impacts on groundwater reserves (2009) J. Hydrol., 373 (1-2), pp. 122-138
dc.relation.referencesHvilshøj, S., Jensen, K.H., Barlebo, H.C., Madsen, B., Analysis of pumping tests of partially penetrating wells in an unconfined aquifer using inverse numerical optimization (1999) Hydrogeo. J., 7, pp. 365-379
dc.relation.referencesJimenez, M., Velasquez, N., Jimenez, J.E., Barco, J., Blessent, D., Lopez-Sanchez, J., Cordoba Castrillon, S., Múnera, J.C., Sequential surface and subsurface flow modeling in a tropical aquifer under different rainfall scenarios (2022) Environ. Model. Software, 149
dc.relation.referencesMao, D., Yeh, T.C.J., Wan, L., Hsu, K.C., Lee, C.H., Wen, J.C., Necessary conditions for inverse modeling of flow through variably saturated porous media (2013) Adv. Water Res., 52, pp. 50-61
dc.relation.referencesMarefat, V., Chapuis, R.P., Duhaime, F., Le Borgne, V., Fully grouted piezometers under transient flow conditions: Field performance and numerical studies (2019) Geotech. Test. J., 42 (2), pp. 433-456
dc.relation.referencesMorin, P., Nochetto, R.H., Siebert, K.G., Convergence of adaptive finite element methods (2002) SIAM Rev., 44 (4), pp. 631-658. , No doi
dc.relation.referencesPiggott, A.R., Bobba, A.G., (1996),, Novakowski, K.S. 1996. Regression and inverse analysis in regional ground-water modelling. J. Water Res. Planning Manag.-ASCE 122(1), 1–10
dc.relation.referencesRichards, L.A., Capillary conduction of liquids through porous medium (1931) Physics, 1 (5), pp. 318-333
dc.relation.referencesRichardson, L.F., Gaunt, J.A., The deferred approach to the limit. Part I. Single lattice. Part II. Interpenetrating lattices (1937) Philos. Trans. Royal Soc. London, Ser. A, 226, pp. 299-361
dc.relation.referencesRoache, P.J., Perspective: A method for uniform reporting of grid refinement studies (1994) ASME J. Fluids Eng., 116 (3), pp. 405-413
dc.relation.referencesRoache, P.J., Verification and Validation in Computational Science and Engineering (1998), Hermosa Publishers New Mexico
dc.relation.referencesRoache, P.J., Fundamentals of verification and validation (2009), Hermosa Publishers Socorro, NM
dc.relation.referencesRoache, P.J., Knupp, P.M., Completed Richardson extrapolation (1993) Comm. Num. Methods Eng., 9 (5), pp. 365-374
dc.relation.referencesRoy, C.J., Oberkampf, W.L., A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing (2011) Comp. Methods Applied Mech. Eng., 200 (25-28), pp. 2131-2144
dc.relation.references(2010), Roy, C.J. Review of discretization error estimators in scientific computing. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 4–7 Jan. 2010, Orlando, Florida, 29 p
dc.relation.referencesStern, F., Wilson, R.V., Coleman, H.W., (1999), Paterson, E.G. Verification and Validation of CFD Simulations. IIHR Report No. 407, Iowa Institute of Hydraulic Research, College of Engineering, The University of Iowa, Iowa City, IA 52242
dc.relation.referencesStern, F., Wilson, R.V., Coleman, H.W., Paterson, E.G., Comprehensive approach to verification and validation of CFD simulations Part 1: Methodology and procedures (2001) J. Fluids Eng., 123 (4), pp. 793-802
dc.relation.referencesThiem, G., Hydrologische methoden (1906), Gebhardt Leipzig, Germany
dc.relation.referencesThwaites, B., Approximate calculation of the laminar boundary layer (1949) Aeronaut. Quart., 1 (3), pp. 245-280
dc.relation.referencesZhang, Y., Nonlinear inversion of an unconfined aquifer: simultaneous estimation of heterogeneous hydraulic conductivities, recharge rates, and boundary conditions (2014) Transp. Porous Media, 102 (2), pp. 275-299
dc.relation.referencesZhang, L., Chapuis, R.P., Recovery test after a constant-head test in a monitoring well: interpretation methods and new findings (2019) Eng. Geol., 259
dc.relation.referencesZhang, L., Chapuis, R.P., Marefat, V., Numerical values of shape factors for field permea-bility tests in unconfined aquifers (2020) Acta Geotech., 15 (5), pp. 1243-1257
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instnameinstname:Universidad de Medellín

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record