Mostrar el registro sencillo del ítem

dc.contributor.authorJuliana-Andrea A.-G
dc.contributor.authorCesar A.-D
dc.contributor.authorJorge Alberto E.-V
dc.contributor.authorLuis-Javier M.-J
dc.contributor.authorCarlos-César P.-E.
dc.date.accessioned2023-10-24T19:24:24Z
dc.date.available2023-10-24T19:24:24Z
dc.date.created2023
dc.identifier.issn11786221
dc.identifier.urihttp://hdl.handle.net/11407/7947
dc.description.abstractHydropower is currently one of the leading renewable energy sources in developing countries. Despite the benefits that it can provide, it also triggers significant environmental impacts, such as changes in the reservoirs’ water quality. In quantifying those changes, dissolved oxygen (DO) is used as one of the water quality indicators and is the most used variable to quantify water quality and analyze water pollution. This paper aims to establish a relationship between water quality and hydrometeorological variables in tropical reservoirs to better estimate dissolved oxygen. Univariate and multivariate techniques were used to analyze temporal and spatial changes in watersheds to better select vital variables for the forecast model, such as Vector Autoregression (VAR). The results show that, for all monitoring stations, the water quality variables associated with the DO process are COD, BOD, and PO₄. Likewise, precipitation and flow discharge were the hydrometeorological parameters that had the most significant impact on DO. Also, the principal component analysis (PCA) allowed us to identify that the strength of the relationships between water quality and hydrometeorology changes depending on the location of the monitoring site. Finally, the implementation of a VAR model showed good performance metrics for dissolved oxygen predictions based on all analyses. © The Author(s) 2023.eng
dc.language.isoeng
dc.publisherSAGE Publications Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85147154919&doi=10.1177%2f11786221221150189&partnerID=40&md5=99a20bb77f1a208e43673364ff6d276a
dc.sourceAir Soil Water Res.
dc.sourceAir, Soil and Water Researcheng
dc.subjectHydroinformaticseng
dc.subjectHydrological time serieseng
dc.subjectHydrometeorologyeng
dc.subjectTropical reservoireng
dc.subjectWater qualityeng
dc.titleOn the Spatial-Temporal Behavior, and on the Relationship Between Water Quality and Hydrometeorological Information to Predict Dissolved Oxygen in Tropical Reservoirs. Case Study: La Miel, Hydropower Dameng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1177/11786221221150189
dc.relation.citationvolume16
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationJuliana-Andrea, A.-G., Universidad de Medellín, Colombia
dc.affiliationCesar, A.-D., Pontificia Universidad Javeriana, Bogotá, Colombia
dc.affiliationJorge Alberto, E.-V., Pontificia Universidad Javeriana, Bogotá, Colombia
dc.affiliationLuis-Javier, M.-J., Universidad de Medellín, Colombia
dc.affiliationCarlos-César, P.-E., Universidad de Medellín, Colombia
dc.relation.referencesAbdi, H., Williams, L.J., Principal component analysis (2010) Wiley Interdisciplinary Reviews: Computational Statistics, 2, pp. 433-459
dc.relation.referencesAlsaleh, M., Abdul-Rahim, A., Moving toward sustainable environment: The effects of hydropower industry on water quality in EU economies (2022) Energy & Environment, 33, pp. 1304-1325. , https://doi.org/10.1177/0958305x211039452
dc.relation.referencesAlsaleh, M., Abdul-Rahim, A.S., Do global competitiveness factors effects the industry sustainability practices? Evidence from European hydropower industry (2021) Journal of Cleaner Production, 310, p. 127492. , https://doi.org/10.1016/j.jclepro.2021.127492
dc.relation.references(2021), https://www.aptech.com/blog/introduction-to-the-fundamentals-of-vector-autoregressive-models/
dc.relation.referencesBarbarossa, V., Schmitt, R.J.P., Huijbregts, M.A.J., Zarfl, C., King, H., Schipper, A.M., Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide (2020) Proceedings of the National Academy of Sciences of the United States of America, 117 (7), pp. 3648-3655. , https://doi.org/10.1073/pnas.1912776117
dc.relation.referencesBranco, C.W.C., Leal, J.J.F., Huszar, V.L.D.M., Farias, D.D.S., Saint’Pierre, T.D., Sousa-Filho, I.F., de Palermo, E.F.D.A., Kozlowsky-Suzuki, B., New lake in a changing world: The construction and filling of a small hydropower reservoir in the tropics (Rio de Janeiro, Brazil) (2019) Environmental Science and Pollution Research, 26 (35), pp. 36007-36022. , https://doi.org/10.1007/s11356-019-06665-y
dc.relation.referencesCalamita, E., (2020) Modelling the effects of large dams on water quality in tropical rivers, , ETH Zürich
dc.relation.referencesChapman, D., (2021) Water quality assessments, , CRC Press
dc.relation.referencesChen, K., Chen, H., Zhou, C., Huang, Y., Qi, X., Shen, R., Liu, F., Ren, H., Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data (2020) Water Research, 171, p. 115454. , https://doi.org/10.1016/j.watres.2019.115454
dc.relation.referencesChen, P., Li, L., Zhang, H., Spatio-temporal variations and source apportionment of water pollution in Danjiangkou Reservoir Basin, Central China (2015) Water, 7 (12), pp. 2591-2611. , https://doi.org/10.3390/w7062591
dc.relation.referencesDalu, T., Wasserman, R.J., Cyanobacteria dynamics in a small tropical reservoir: Understanding spatio-temporal variability and influence of environmental variables (2018) The Science of the Total Environment, 643, pp. 835-841. , https://doi.org/10.1016/j.scitotenv.2018.06.256
dc.relation.referencesde Oliveira, K.L., Ramos, R.L., Oliveira, S.C., Christofaro, C., Spatial variability of surface water quality in a large Brazilian semiarid reservoir and its main tributaries (2021) Environmental Monitoring and Assessment, 193 (7). , https://doi.org/10.1007/s10661-021-09194-9, 1–15
dc.relation.referencesDordoni, M., Seewald, M., Rinke, K., Schmidmeier, J., Barth, J.A.C., Novel evaluations of sources and sinks of dissolved oxygen via stable isotopes in lentic water bodies (2022) The Science of the Total Environment, 838, p. 156541. , https://doi.org/10.1016/j.scitotenv.2022.156541
dc.relation.referencesFu, L., Gan Wang, Y., Statistical tools for analyzing water quality data (2012) Water quality monitoring and assessment, pp. 143-168. , InTech Open, (., –
dc.relation.referencesGyimah, R.A.A., Gyamfi, C., Anornu, G.K., Karikari, A.Y., Tsyawo, F.W., Multivariate statistical analysis of water quality of the Densu River, Ghana (2021) International Journal of River Basin Management, 19 (2), pp. 189-199. , https://doi.org/10.1080/15715124.2020.1803337
dc.relation.referencesHurvich, C.M., Tsai, C.L., Bias of the corrected AIC criterion for underfitted regression and time series models (1991) Biometrika, 78 (3), pp. 499-509. , https://doi.org/10.1093/biomet/78.3.499
dc.relation.referencesHwang, S.-J., Kim, K., Park, C., Seo, W., Choi, B.-G., Eum, H.S., Park, M.-H., Shin, J.-K., Hydro-meteorological effects on water quality variability in Paldang Reservoir, confluent area of the South-Han River-North-Han River-Gyeongan Stream, Korea (2016) Korean Journal of Ecology and Environment, 49 (4), pp. 354-374. , https://doi.org/10.11614/ksl.2016.49.4.354
dc.relation.referencesJerves-Cobo, R., Forio, M.A.E., Lock, K., Van Butsel, J., Pauta, G., Cisneros, F., Nopens, I., Goethals, P.L.M., Biological water quality in tropical rivers during dry and rainy seasons: A model-based analysis (2020) Ecological Indicators, 108, p. 105769. , https://doi.org/10.1016/j.ecolind.2019.105769
dc.relation.referencesKillingtveit, Å., Hydropower (2019) Managing Global Warming, pp. 265-315. , Academic Press, T. Letcher (Ed.), (., –
dc.relation.referencesLing, T.Y., Gerunsin, N., Soo, C.L., Nyanti, L., Sim, S.F., Grinang, J., Seasonal changes and spatial variation in water quality of a large young tropical reservoir and its downstream river (2017) Journal of Chemistry, 2017, pp. 1-16. , https://doi.org/10.1155/2017/8153246
dc.relation.referencesLiqoarobby, R., Suparman, S., Fadilah, Y.K., Aqueous systems of dissolved oxygen in reservoir (2021) E3S Web of Conferences, 249, p. 03015. , https://doi.org/10.1051/e3sconf/202124903015
dc.relation.referencesLiu, C., Pan, C., Chang, Y., Luo, M., An integrated autoregressive model for predicting water quality dynamics and its application in Yongding River (2021) Ecological Indicators, , https://doi.org/10.1016/j.ecolind.2021.108354, 133, 108354
dc.relation.referencesLi, X., Guo, M., Duan, X., Zhao, J., Hua, Y., Zhou, Y., Liu, G., Dionysiou, D.D., Distribution of organic phosphorus species in sediment profiles of shallow lakes and its effect on photo-release of phosphate during sediment resuspension (2019) Environment International, 130, 104916, , https://doi.org/10.1016/j.envint.2019.104916
dc.relation.referencesLi, X.Z., Chen, Z.J., Fan, X.C., Cheng, Z.J., Hydropower development situation and prospects in China (2018) Renewable and Sustainable Energy Reviews, 82, pp. 232-239. , https://doi.org/10.1016/j.rser.2017.08.090, (August 2017
dc.relation.referencesLliev, I., Hadjinikolova, L., (2013) Seasonal and vertical dynamics of the water temperature and oxygen content in Kardzhali reservoir, , https://www.researchgate.net/publication/305781610, Agricultural Science and Technology
dc.relation.referencesLobato, T.C., Hauser-Davis, R.A., Oliveira, T.F., Silveira, A.M., Silva, H.A., Tavares, M.R., Saraiva, A.C., Construction of a novel water quality index and quality indicator for reservoir water quality evaluation: A case study in the Amazon region (2015) Hydrology Journal, 522, pp. 674-683. , https://doi.org/10.1016/j.jhydrol.2015.01.021
dc.relation.referencesMamun, M., Kim, J.Y., An, K.G., Multivariate statistical analysis of water quality and trophic state in an artificial dam reservoir (2021) Water, 13 (2), p. 186. , https://doi.org/10.3390/w13020186
dc.relation.referencesMamun, M., Lee, S.J., An, K.G., Temporal and spatial variation of nutrients, suspended solids, and chlorophyll in Yeongsan watershed (2018) Journal of Asia-Pacific Biodiversity, 11 (2), pp. 206-216. , https://doi.org/10.1016/j.japb.2018.02.006
dc.relation.referencesMarcé, R., Rodríguez-Arias, M.À., García, J.C., Armengol, J., El Niño Southern Oscillation and climate trends impact reservoir water quality (2010) Global Change Biology, 16 (10), pp. 2857-2865. , https://doi.org/10.1111/j.1365-2486.2010.02163.x
dc.relation.referencesMarques, É.T., Gunkel, G., Sobral, M.C., Management of tropical river basins and reservoirs under water stress: Experiences from northeast Brazil (2019) Environments, 6 (6), p. 62. , https://doi.org/10.3390/environments6060062
dc.relation.referencesNadarajah, S., Wijenayake, W.M.H.K., Amarasinghe, U.S., Influence of hydrology on water quality and trophic state of irrigation reservoirs in Sri Lanka (2019) Lakes and Reservoirs: Research and Management, 24 (3), pp. 287-298. , https://doi.org/10.1111/lre.12283
dc.relation.referencesRajwa, A., Bialik, R.J., Karpiński, M., Luks, B., Dissolved oxygen in rivers: Concepts and measuring techniques (2014) Achievements, pp. 337-350. , Bialik R., Majdański M., Moskalik M., (eds), Springer, (Eds.), (., –
dc.relation.referencesRajwa-Kuligiewicz, A., Bialik, R.J., Rowiński, P.M., Dissolved oxygen and water temperature dynamics in lowland rivers over various timescales (2015) Journal of Hydrology and Hydromechanics, 63 (4), pp. 353-363. , https://doi.org/10.1515/johh-2015-0041
dc.relation.referencesRangel-Peraza, J.G., De Anda, J., González-Farias, F., Erickson, D., Statistical assessment of water quality seasonality in large tropical reservoirs (2009) Lakes and Reservoirs: Research and Management, 14 (4), pp. 315-323. , https://doi.org/10.1111/j.1440-1770.2009.00412.x
dc.relation.referencesRanković, V., Radulović, J., Radojević, I., Ostojić, A., Čomić, L., Prediction of dissolved oxygen in reservoirs using adaptive network-based fuzzy inference system (2012) Journal of Hydroinformatics, 14 (1), pp. 167-179. , https://doi.org/10.2166/hydro.2011.084
dc.relation.referencesRicardo, P., Medeiros, P., Cavalcante, G.H., Brandini, N., Knoppers, B.A., Inter-annual variability on the water quality in the lower São Francisco River (NE-Brazil) (2016) Acta Limnologica Brasiliensia, 28, p. 5. , https://doi.org/10.1590/s2179-975x3515
dc.relation.referencesSchober, P., Boer, C., Schwarte, L.A., Correlation coefficients: Appropriate use and interpretation (2018) Anesthesia-Analgesia Research Society, 126 (5), pp. 1763-1768
dc.relation.referencesSemensatto, D., Labuto, G., Zorzal-Almeida, S., McRae, D.V., Spatio-temporal changes in water quality in the Guarapiranga reservoir (São Paulo, Brazil): Insights from a long-term monitoring data series (2021) Environmental Monitoring and Assessment, 193 (7). , https://doi.org/10.1007/s10661-021-09167-y, 1–15
dc.relation.referencesSilva, S.N., Castillo, J.Á.D., An approach of the hydropower: Advantages and impacts. A review (2021) Journal of Energy Research and Reviews, June, pp. 10-20. , https://doi.org/10.9734/jenrr/2021/v8i130201, del
dc.relation.referencesVaidya, R.A., Molden, D.J., Shrestha, A.B., Wagle, N., Tortajada, C., The role of hydropower in South Asia’s energy future (2021) International Journal of Water Resources Development, 37 (3), pp. 367-391. , https://doi.org/10.1080/07900627.2021.1875809
dc.relation.referencesVarol, M., Spatio-temporal changes in surface water quality and sediment phosphorus content of a large reservoir in Turkey (2020) Environmental Pollution, 259, p. 113860. , https://doi.org/10.1016/j.envpol.2019.113860, (, a
dc.relation.referencesVarol, M., Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study (2020) Environmental Pollution, 266, p. 115417. , https://doi.org/10.1016/j.envpol.2020.115417, (, b
dc.relation.referencesVega, A.S., Lizama, K., Pastén, P.A., Water quality: Trends and challenges (2018) Water policy in Chile, pp. 25-51. , Donoso G., (ed), (Ed.), (., –, ). Springer
dc.relation.referencesVilas, M.P., Marti, C.L., Oldham, C.E., Hipsey, M.R., Macrophyte-induced thermal stratification in a shallow urban lake promotes conditions suitable for nitrogen-fixing cyanobacteria (2018) Hydrobiologia, 806 (1), pp. 411-426. , https://doi.org/10.1007/s10750-017-3376-z
dc.relation.referencesWeirich, C.A., Robertson, D.M., Miller, T.R., Physical, biogeochemical, and meteorological factors responsible for interannual changes in cyanobacterial community composition and biovolume over two decades in a eutrophic lake (2019) Hydrobiologia, 828 (1), pp. 165-182. , https://doi.org/10.1007/s10750-018-3810-x
dc.relation.referencesWinton, R.S., Calamita, E., Wehrli, B., Reviews and syntheses: Dams, water quality and tropical reservoir stratification (2019) Biogeosciences, 16 (8), pp. 1657-1671. , https://doi.org/10.5194/bg-16-1657-2019
dc.relation.referencesWoldeab, B., Beyene, A., Ambelu, A., Buffam, I., Mereta, S.T., Seasonal and spatial variation of reservoir water quality in the southwest of Ethiopia (2018) Environmental Monitoring and Assessment, 190 (3), p. 163. , https://doi.org/10.1007/s10661-018-6527-4
dc.relation.referencesYang, X., Yuan, J., Yue, F.-J., Li, S.-L., Wang, B., Mohinuzzaman, M., Liu, Y., Mostofa, K.M.G., New insights into mechanisms of sunlight- and dark-mediated high-temperature accelerated diurnal production-degradation of fluorescent DOM in lake waters (2021) Science of The Total Environment, 760, 143377, , https://doi.org/10.1016/j.scitotenv.2020.143377
dc.relation.referencesYaseen, Z., Ehteram, M., Sharafati, A., Shahid, S., Al-Ansari, N., El-Shafie, A., The integration of nature-inspired algorithms with least square support vector regression models: Application to modeling river dissolved oxygen concentration (2018) Water, 10 (9). , https://doi.org/10.3390/w10091124, 1124
dc.relation.referencesZarfl, C., Berlekamp, J., He, F., Jähnig, S.C., Darwall, W., Tockner, K., Future large hydropower dams impact global freshwater megafauna (2019) Scientific Reports, 9 (1), pp. 1-10. , https://doi.org/10.1038/s41598-019-54980-8
dc.relation.referencesZarfl, C., Lumsdon, A.E., Berlekamp, J., Tydecks, L., Tockner, K., A global boom in hydropower dam construction (2015) Aquatic Sciences, 77 (1), pp. 161-170. , https://doi.org/10.1007/s00027-014-0377-0
dc.relation.referencesZhang, R., Cuartas, L.A., de Castro Carvalho, L.V., Reis Deusdará Leal, K., Mendiondo, E.M., Abe, N., Birkinshaw, S., Nobre, C.A., Season-based rainfall-runoff modelling using the probability-distributed model (PDM) for large basins in southeastern Brazil (2018) Hydrological Processes, 32, pp. 2217-2230. , https://doi.org/10.1002/hyp.13154
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem