Mostrar el registro sencillo del ítem

dc.contributor.authorSerna-Carrizales J.C
dc.contributor.authorZárate-Guzmán A.I
dc.contributor.authorAguilar-Aguilar A
dc.contributor.authorForgionny A
dc.contributor.authorBailón-García E
dc.contributor.authorFlórez E
dc.contributor.authorGómez-Durán C.F.A
dc.contributor.authorOcampo-Pérez R.
dc.date.accessioned2023-10-24T19:24:24Z
dc.date.available2023-10-24T19:24:24Z
dc.date.created2023
dc.identifier.issn22279717
dc.identifier.urihttp://hdl.handle.net/11407/7948
dc.description.abstractSulfamethoxazole [SMX] and metronidazole [MNZ] are emergent pollutants commonly found in surface water and wastewater, which can cause public health and environmental issues even at trace levels. An efficient alternative for their removal is the application of adsorption technology. The present work evaluated single and binary adsorption processes using granular activated carbon (CAG F400) for SMX and MNZ in an aqueous solution. The binary adsorption process was studied using a Box–Behnken experimental design (RSD), and the results were statistically tested using an analysis of variance. Density functional theory (DFT) modeling was employed to characterize the interactions between the antibiotics and the CAG F400 surface. For the individual adsorption process, adsorption capacities (qe) of 1.61 mmol g−1 for SMX and 1.10 mmol g−1 for MNZ were obtained. The adsorption isotherm model that best fit experimental data was the Radke–Prausnitz isotherm model. The adsorption mechanism occurs through electrostatic and π-π dispersive interactions. For the binary adsorption process, the total binary adsorption capacity achieved was 1.13 mmol g−1, evidencing competitive adsorption. The significant factors that determine the removal of SMX and MNZ from a binary solution were the solution pH and the initial concentration of antibiotics. From DFT studies, it was found that SMX adsorption on CAG F400 was favored with adsorption energy (Eads) of −10.36 kcal mol−1. Finally, the binary adsorption results corroborated that the adsorption process was favorable for both molecules. © 2023 by the authors.eng
dc.language.isoeng
dc.publisherMDPI
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85156102572&doi=10.3390%2fpr11041009&partnerID=40&md5=d39a0c1e07ccce6ef3c8f8ba158f3752
dc.sourceProcess.
dc.sourceProcesseseng
dc.subjectActivated carboneng
dc.subjectAdsorption energyeng
dc.subjectBinary adsorptioneng
dc.subjectMetronidazoleeng
dc.subjectSulfamethoxazoleeng
dc.titleOptimization of Binary Adsorption of Metronidazole and Sulfamethoxazole in Aqueous Solution Supported with DFT Calculationseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.3390/pr11041009
dc.relation.citationvolume11
dc.relation.citationissue4
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationSerna-Carrizales, J.C., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, 78210, Mexico
dc.affiliationZárate-Guzmán, A.I., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, 78210, Mexico
dc.affiliationAguilar-Aguilar, A., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, 78210, Mexico
dc.affiliationForgionny, A., Grupo de Investigación de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationBailón-García, E., Research Group in Carbon Materials, Inorganic Chemistry Department, Faculty of Sciences, University of Granada, Campus Fuente Nueva s/n, Granada, 18071, Spain
dc.affiliationFlórez, E., Grupo de Investigación de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationGómez-Durán, C.F.A., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, 78210, Mexico
dc.affiliationOcampo-Pérez, R., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, 78210, Mexico
dc.relation.referencesGondi, R., Kavitha, S., Yukesh Kannah, R., Parthiba Karthikeyan, O., Kumar, G., Kumar Tyagi, V., Rajesh Banu, J., Algal-Based System for Removal of Emerging Pollutants from Wastewater: A Review (2022) Bioresour. Technol, 344, p. 126245. , 34743994
dc.relation.referencesMoral-Rodríguez, A.I., Leyva-Ramos, R., Ocampo-Pérez, R., Mendoza-Barron, J., Serratos-Alvarez, I.N., Salazar-Rabago, J.J., Removal of Ronidazole and Sulfamethoxazole from Water Solutions by Adsorption on Granular Activated Carbon: Equilibrium and Intraparticle Diffusion Mechanisms (2016) Adsorption, 22, pp. 89-103
dc.relation.referencesLi, R., Sun, W., Xia, L., Zia, U., Sun, X., Wang, Z., Wang, Y., Deng, X., Adsorption of Toxic Tetracycline, Thiamphenicol and Sulfamethoxazole by a Granular Activated Carbon (GAC) under Different Conditions (2022) Molecules, 27. , 36432080
dc.relation.referencesBen, Y., Fu, C., Hu, M., Liu, L., Wong, M.H., Zheng, C., Human Health Risk Assessment of Antibiotic Resistance Associated with Antibiotic Residues in the Environment: A Review (2019) Environ. Res, 169, pp. 483-493. , 30530088
dc.relation.referencesBlair, B.D., Crago, J.P., Hedman, C.J., Treguer, R.J.F., Magruder, C., Royer, L.S., Klaper, R.D., Evaluation of a Model for the Removal of Pharmaceuticals, Personal Care Products, and Hormones from Wastewater (2013) Sci. Total Environ, 444, pp. 515-521
dc.relation.referencesWhite, J.R., Belmont, M.A., Metcalfe, C.D., Pharmaceutical Compounds in Wastewater: Wetland Treatment as a Potential Solution (2006) Sci. World J, 6, pp. 1731-1736
dc.relation.referencesBilal, M., Rizwan, K., Adeel, M., Iqbal, H.M.N., Hydrogen-Based Catalyst-Assisted Advanced Oxidation Processes to Mitigate Emerging Pharmaceutical Contaminants (2022) Int. J. Hydrogen Energy, 47, pp. 19555-19569
dc.relation.referencesArzate, S., Pfister, S., Oberschelp, C., Sánchez-Pérez, J.A., Environmental Impacts of an Advanced Oxidation Process as Tertiary Treatment in a Wastewater Treatment Plant (2019) Sci. Total Environ, 694, p. 133572
dc.relation.referencesGhahari, S., Ghahari, S., Ghahari, S., Nematzadeh, G., Sarma, H., Integrated Remediation Approaches for Selected Pharmaceutical and Personal Care Products in Urban Soils for a Sustainable Future (2021) Energy Ecol. Environ, 7, pp. 439-452
dc.relation.referencesCarvalho, I.T., Santos, L., Antibiotics in the Aquatic Environments: A Review of the European Scenario (2016) Environ. Int, 94, pp. 736-757
dc.relation.referencesSarker, M., Shin, S., Jhung, S.H., Adsorptive Removal of Nitroimidazole Antibiotics from Water Using Porous Carbons Derived from Melamine-Loaded MAF-6 (2019) J. Hazard. Mater, 378, p. 120761. , 31228708
dc.relation.referencesGuo, R., Wang, Y., Li, J., Cheng, X., Dionysiou, D.D., Sulfamethoxazole Degradation by Visible Light Assisted Peroxymonosulfate Process Based on Nanohybrid Manganese Dioxide Incorporating Ferric Oxide (2020) Appl. Catal. B, 278, p. 119297
dc.relation.referencesManjunath, S.V., Singh Baghel, R., Kumar, M., Antagonistic and Synergistic Analysis of Antibiotic Adsorption on Prosopis Juliflora Activated Carbon in Multicomponent Systems (2020) Chem. Eng. J, 381, p. 122713
dc.relation.referencesPrasannamedha, G., Kumar, P.S., A Review on Contamination and Removal of Sulfamethoxazole from Aqueous Solution Using Cleaner Techniques: Present and Future Perspective (2020) J. Clean. Prod, 250, p. 119553
dc.relation.referencesPhoon, B.L., Ong, C.C., Mohamed Saheed, M.S., Show, P.L., Chang, J.S., Ling, T.C., Lam, S.S., Juan, J.C., Conventional and Emerging Technologies for Removal of Antibiotics from Wastewater (2020) J. Hazard. Mater, 400, p. 122961
dc.relation.referencesKumar, A., Kumar, A., Sharma, G., Al-Muhtaseb, A.H., Naushad, M., Ghfar, A.A., Stadler, F.J., Quaternary Magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 Nano-Junction for Visible Light and Solar Powered Degradation of Sulfamethoxazole from Aqueous Environment (2018) Chem. Eng. J, 334, pp. 462-478
dc.relation.referencesSenthamarai, C., Senthil-Kumar, P., Priyadharshini, M., Vijayalakshmi, P., Vinoth, K., Baskaralingam, P., Thiruvengararavi, K.V., Sivanesan, S., Adsorption Behaviour of Methylene Blue Dye onto Surface Modified Strychnos Potatorum Seeds (2012) Environ. Prog. Sustain. Energy, 33, pp. 676-680
dc.relation.referencesAhmed, I., Adhikary, K.K., Kim, K., Ahn, W.S., Aqueous Adsorption of Sulfamethoxazole on an N-Doped Zeolite Beta-Templated Carbon (2021) J. Colloid Interface Sci, 582, pp. 467-477
dc.relation.referencesAriyanto, T., Sarwendah, R.A.G., Amimmal, Y.M.N., Laksmana, W.T., Prasetyo, I., Modifying Nanoporous Carbon through Hydrogen Peroxide Oxidation for Removal of Metronidazole Antibiotics from Simulated Wastewater (2019) Processes, 7
dc.relation.referencesCarrales-Alvarado, D.H., Leyva-Ramos, R., Martínez-Costa, J.I., Ocampo-Pérez, R., Competitive Adsorption of Dimetridazole and Metronidazole Antibiotics on Carbon Materials from Aqueous Solution (2018) Water Air Soil Pollut, 229, p. 108
dc.relation.referencesPauletto, P.S., Moreno-Pérez, J., Hernández-Hernández, L.E., Bonilla-Petriciolet, A., Dotto, G.L., Salau, N.P.G., Novel Biochar and Hydrochar for the Adsorption of 2-Nitrophenol from Aqueous Solutions: An Approach Using the PVSDM Model (2021) Chemosphere, 269, p. 128748
dc.relation.referencesSerna-Carrizales, J.C., Collins-Martínez, V.H., Flórez, E., Gomez-Duran, C.F.A., Palestino, G., Ocampo-Pérez, R., Adsorption of Sulfamethoxazole, Sulfadiazine and Sulfametazine in Single and Ternary Systems on Activated Carbon. Experimental and DFT Computations (2021) J. Mol. Liq, 324, p. 114740
dc.relation.referencesForgionny, A., Acelas, N.Y., Ocampo-Pérez, R., Padilla-Ortega, E., Pérez, S., Flórez, E., Mechanism Adsorption Analysis during the Removal of Cd2+ and Cu2+ onto Cedar Sawdust via Experiment Coupled with Theoretical Calculation: Mono- and Multicomponent Systems (2022) Environ. Nanotechnol. Monit. Manag, 18, p. 100715
dc.relation.referencesKavand, M., Eslami, P., Razeh, L., The Adsorption of Cadmium and Lead Ions from the Synthesis Wastewater with the Activated Carbon: Optimization of the Single and Binary Systems (2020) J. Water Process Eng, 34, p. 101151
dc.relation.referencesGopinath, A., Retnam, B.G., Muthukkumaran, A., Aravamudan, K., Swift, Versatile and a Rigorous Kinetic Model Based Artificial Neural Network Surrogate for Single and Multicomponent Batch Adsorption Processes (2020) J. Mol. Liq, 297, p. 111888
dc.relation.referencesPauletto, P.S., Lütke, S.F., Dotto, G.L., Salau, N.P.G., Forecasting the Multicomponent Adsorption of Nimesulide and Paracetamol through Artificial Neural Network (2021) Chem. Eng. J, 412, p. 127527
dc.relation.referencesBagtash, M., Zolgharnein, J., Crossed Mixture-Process Design for Optimization of Simultaneous Adsorption of Tartrazine and Indigo Carmine Dyes by Cobalt Hydroxide Nanosorbent (2018) J. Chemom, 32, p. e3039
dc.relation.referencesAsgari, E., Sheikhmohammadi, A., Yeganeh, J., Application of the Fe3O4-Chitosan Nano-Adsorbent for the Adsorption of Metronidazole from Wastewater: Optimization, Kinetic, Thermodynamic and Equilibrium Studies (2020) Int. J. Biol. Macromol, 164, pp. 694-706
dc.relation.referencesSun, Y., Bian, J., Zhu, Q., Sulfamethoxazole Removal of Adsorption by Carbon—Doped Boron Nitride in Water (2021) J. Mol. Liq, 349, p. 118216
dc.relation.referencesMathon, B., Coquery, M., Liu, Z., Penru, Y., Guillon, A., Esperanza, M., Miège, C., Choubert, J.M., Ozonation of 47 Organic Micropollutants in Secondary Treated Municipal Effluents: Direct and Indirect Kinetic Reaction Rates and Modelling (2021) Chemosphere, 262, p. 127969
dc.relation.referencesCarrales-Alvarado, D.H., Ocampo-Pérez, R., Leyva-Ramos, R., Rivera-Utrilla, J., Removal of the Antibiotic Metronidazole by Adsorption on Various Carbon Materials from Aqueous Phase (2014) J. Colloid Interface Sci, 436, pp. 276-285. , 25280372
dc.relation.referencesHernández-Padilla, E.S., Zárate-Guzmán, A.I., González-Ortega, O., Padilla-Ortega, E., Gómez-Durán, A., Delgado-Sánchez, P., Aguilar-Aguilar, A., Ocampo-Pérez, R., Elucidation of Adsorption Mechanisms and Mass Transfer Controlling Resistances during Single and Binary Adsorption of Caffeic and Chlorogenic Acids (2022) Environ. Sci. Pollut. Res, 29, pp. 26297-26311. , 34851488
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem