dc.contributor.author | Gomez S | |
dc.contributor.author | Hoyos J.H | |
dc.contributor.author | Valdivia J.A. | |
dc.date.accessioned | 2023-10-24T19:24:24Z | |
dc.date.available | 2023-10-24T19:24:24Z | |
dc.date.created | 2023 | |
dc.identifier.issn | 29505 | |
dc.identifier.uri | http://hdl.handle.net/11407/7949 | |
dc.description.abstract | We discuss the particle-in-cell (PIC) method, which is one of the most widely used approaches for the kinetic description of plasmas. The positions and velocities of the charged particles take continuous values in phase space, and spatial macroscopic quantities, such as the charge density and self-generated electric fields, are calculated at discrete spatial points of a grid. We discuss the computer implementation of the PIC method for one-dimensional plasmas in the electrostatic regime and discuss a desktop application (PlasmAPP), which includes the implementation of different numerical and interpolation methods and diagnostics in a graphical user interface. To illustrate its functionality, the electron-electron two-stream instability is discussed. Readers can use PlasmAPP to explore advanced numerical methods and simulate different phenomena of interest. © 2023 Author(s). | eng |
dc.language.iso | eng | |
dc.publisher | American Association of Physics Teachers | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148727060&doi=10.1119%2f5.0135515&partnerID=40&md5=6826e8371abe7dec31d3a2a3e88edd3e | |
dc.source | Am. J. Phys. | |
dc.source | American Journal of Physics | eng |
dc.title | Particle-in-cell method for plasmas in the one-dimensional electrostatic limit | eng |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ciencias Básicas | spa |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.1119/5.0135515 | |
dc.relation.citationvolume | 91 | |
dc.relation.citationissue | 3 | |
dc.relation.citationstartpage | 225 | |
dc.relation.citationendpage | 234 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.affiliation | Gomez, S., Escuela de Ciencias Aplicadas e Ingeniería, Universidad Eafit, Medellín, Colombia | |
dc.affiliation | Hoyos, J.H., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Valdivia, J.A., Depto. de Física, Facultad de Ciencias, Universidad de Chile, Santiago, Chile | |
dc.relation.references | Birdsall, C.K., Langdon, A.B., (2005) Plasma Physics via Computer Simulation, , (Taylor and Francis, New York) | |
dc.relation.references | Pritchett, P.L., Particle-in-cell simulation of plasmas - A tutorial (2003) Space Plasma Simulation, pp. 1-24. , in, edited by J. Büchner, M. Scholer, and C. T. Dum (Springer Berlin Heidelberg, Berlin, Heidelberg) | |
dc.relation.references | Treumann, R., Baumjohann, W., Advanced Space Plasma Physics (Imperial C.P., London, 1997) | |
dc.relation.references | Tskhakaya, D., The particle-in-cell method (2008) Computational Many-Particle Physics, pp. 161-189. , in, edited by H. Fehske, R. Schneider, and A. Weiße (Springer Berlin Heidelberg, Berlin, Heidelberg) | |
dc.relation.references | Dawson, J.M., Particle simulation of plasmas (1983) Rev. Mod. Phys., 55, pp. 403-447 | |
dc.relation.references | Hockney, R.W., Eastwood, J.W., (1988) Computer Simulation Using Particles, , (Hilger, Bristol) | |
dc.relation.references | Hutchinson, I., How can slow plasma electron holes exist? (2021) Phys. Rev. E, 104 | |
dc.relation.references | Rajawat, R.S., Sengupta, S., Particle-in-cell simulation of Buneman instability beyond quasilinear saturation (2017) Phys. Plasmas, 24 | |
dc.relation.references | Koen, E., Collier, A., Maharaj, S., Hellberg, M., Particle-in-cell simulations of ion-acoustic waves with application to Saturn's magnetosphere (2014) Phys. Plasmas, 21 | |
dc.relation.references | Jupyter notebooks for educational plasma physics simulations with PIC https://github.com/UCLA-Plasma-Simulation-Group/JupyterPIC | |
dc.relation.references | Omura, Y., Matsumoto, H., (1993) KEMPO1: Technical Guide to One-Dimensional Electromagnetic Particle Code, , (Terra Scientific, Tokyo) | |
dc.relation.references | Rodríguez-Patiño, D., Ramírez Ramírez, S., Hoyos, J., Salcedo Gallo, J., Restrepo Parra, E., Implementation of the two-dimensional electrostatic particle-in-cell method implementation of the two-dimensional electrostatic particle-in-cell method (2020) Am. J. Phys., 88, pp. 159-167 | |
dc.relation.references | Lapenta, G., Particle-in-cell 1D electrostatic code (2007), https://github.com/valsusa/SkeletonPIC | |
dc.relation.references | Gomez, S., Hoyos, J.H., Valdivia, J.A., PlasmAPP code (2022), https://github.com/gsara798/PLASMAPP-0.1.git | |
dc.relation.references | PlasmAPP code See supplementary material at https://www.scitation.org/doi/suppl/10.1119/5.0135515 for and supplementary notes | |
dc.relation.references | Reif, F., (1965) Fundamentals of Statistical and Thermal Physics, , (McGraw Hill, Tokyo) | |
dc.relation.references | Lapenta, G., Kinetic plasma simulation: Particle in cell method (2015), in Proceedings of the XII Carolus Magnus Summer School on Plasma and Fusion Energy Physics (KU Leuven, Belgium) | |
dc.relation.references | Ledvina, S., Ma, Y., Kallio, E., Modeling and simulating flowing plasmas and related phenomena (2008) Space Sci. Rev., 139, pp. 143-189 | |
dc.relation.references | Goldston, R., Rutherford, P.H., (2020) Introduction to Plasma Physics, , (CRC Press, Boca Raton, FL) | |
dc.relation.references | Bittencourt, J.A., (2004) Fundamentals of Plasma Physics, , 3rd ed. (Springer-Verlag, New York) | |
dc.relation.references | Bellan, P.M., (2006) Fundamentals of Plasma Physics, , (Cambridge U. P., Cambridge) | |
dc.relation.references | Krall, N., Trivelpiece, A., Kempton, J., (1973) Principles of Plasma Physics, , International Series in Pure and Applied Physics (McGraw-Hill, New York) | |
dc.relation.references | Chaudhary, K., Imam, A.M., Rizvi, S.Z.H., Ali, J., (2018) Kinetic Theory, p. 7. , in, edited by G. Z. Kyzas and A. C. Mitropoulos (IntechOpen, Rijeka), Cha | |
dc.relation.references | Ruhl, H., Mulser, P., Relativistic Vlasov simulation of intense fs laser pulse-matter interaction (1995) Phys. Lett. A, 205, pp. 388-392 | |
dc.relation.references | Pukhov, A., Particle-in-cell codes for plasma-based particle acceleration , pp. 181-206. , Proceedings of the 2014 CAS-CERN Accelerator School: Plasma Wake Acceleration, 23-29 November 2014, Geneva, Switzerland (CERN, Geneva, 2016) | |
dc.relation.references | Navarro, R.E., Moya, P.S., Muñoz, V., Araneda, J.A., Viñas, A.F., Valdivia, J.A., (2014) Solar Wind Thermally Induced Magnetic Fluctuations, 112. , Vol. (American Physical Society, College Park, Maryland) | |
dc.relation.references | Sainia, V., Pandey, S.K., Trivedi, P., Ganesh, R., Coherent phase space structures in a 1D electrostatic plasma using particle-in-cell and Vlasov simulations: A comparative study (2018) Phys. Plasmas, 25 | |
dc.relation.references | Pandey, S.K., Ganesh, R., Landau damping in one dimensional periodic inhomogeneous collisionless plasmas (2021) AIP Adv., 11 | |
dc.relation.references | Burden, R.L., Faires, J.D., Numerical analysis (1989) The Prindle, Weber and Schmidt Series in Mathematics, , 4th ed., (PWS-Kent Publishing Company, Boston) | |
dc.relation.references | Blandón, J.S., Grisales, J.P., Riascos, H., (2017) Electrostatic Plasma Simulation by Particle-In-Cell Method Using ANACONDA Package, 850. , Vol. (IOP Publishing, Bristol) | |
dc.relation.references | Hutchinson, I., Electron holes in phase space: What they are and why they matter (2017) Phys. Plasmas, 24 | |
dc.relation.references | Chen, F.F., (1974) Introduction to Plasma Physics, , (Plenum Press, New York) | |
dc.relation.references | Gbaorun, F., John, E.S., Aper, T.M., Daniel, T., Eriba-Idoko, F., Simulation of electron-electron two stream instability (ETSI) (2019) Nigerian Annals of Pure and Applied Sciences, 2, pp. 265-273 | |
dc.relation.references | Lapenta, G., Particle simulations of space weather (2012) Comput. Plasma Phys., 231, pp. 795-821 | |
dc.relation.references | Pickett, J.S., Chen, L.-J., Kahler, S.W., Santolík, O., Goldstein, M.L., Lavraud, B., Décréau, P.M.E., Balogh, A., On the generation of solitary waves observed by cluster in the near-Earth magnetosheath (2005) Nonlin. Processes Geophys., 12, pp. 181-193 | |
dc.relation.references | Create Codistributed Array of Normally Distributed Random Numbers https://la.mathworks.com/help/parallel-computing/codistributed.randn.html | |
dc.relation.references | Return a sample (or samples) from the 'standard normal' distribution https://numpy.org/doc/stable/reference/random/generated/numpy.random.randn.html, Numpy | |
dc.relation.references | Koskinen, H.E.J., (2011) Physics of Space Storms from the Solar Surface the Earth, , (Springer, Berlin) | |
dc.relation.references | Moreno, Q., Dieckmann, M.E., Ribeyre, X., Jequier, S., Tikhonchuk, V.T., D'Humières, E., Impact of the electron to ion mass ratio on unstable systems in particle-in-cell simulations (2018) Phys. Plasmas, 25 | |
dc.relation.references | Goldman, M.V., Newman, D.L., Ergun, R.E., Phase-space holes due to electron and ion beams accelerated by a current-driven potential ramp (2003) Nonlin. Processes Geophys., 10, pp. 37-44 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |