Show simple item record

dc.contributor.authorGomez S
dc.contributor.authorHoyos J.H
dc.contributor.authorValdivia J.A.
dc.date.accessioned2023-10-24T19:24:24Z
dc.date.available2023-10-24T19:24:24Z
dc.date.created2023
dc.identifier.issn29505
dc.identifier.urihttp://hdl.handle.net/11407/7949
dc.description.abstractWe discuss the particle-in-cell (PIC) method, which is one of the most widely used approaches for the kinetic description of plasmas. The positions and velocities of the charged particles take continuous values in phase space, and spatial macroscopic quantities, such as the charge density and self-generated electric fields, are calculated at discrete spatial points of a grid. We discuss the computer implementation of the PIC method for one-dimensional plasmas in the electrostatic regime and discuss a desktop application (PlasmAPP), which includes the implementation of different numerical and interpolation methods and diagnostics in a graphical user interface. To illustrate its functionality, the electron-electron two-stream instability is discussed. Readers can use PlasmAPP to explore advanced numerical methods and simulate different phenomena of interest. © 2023 Author(s).eng
dc.language.isoeng
dc.publisherAmerican Association of Physics Teachers
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85148727060&doi=10.1119%2f5.0135515&partnerID=40&md5=6826e8371abe7dec31d3a2a3e88edd3e
dc.sourceAm. J. Phys.
dc.sourceAmerican Journal of Physicseng
dc.titleParticle-in-cell method for plasmas in the one-dimensional electrostatic limiteng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1119/5.0135515
dc.relation.citationvolume91
dc.relation.citationissue3
dc.relation.citationstartpage225
dc.relation.citationendpage234
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationGomez, S., Escuela de Ciencias Aplicadas e Ingeniería, Universidad Eafit, Medellín, Colombia
dc.affiliationHoyos, J.H., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationValdivia, J.A., Depto. de Física, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
dc.relation.referencesBirdsall, C.K., Langdon, A.B., (2005) Plasma Physics via Computer Simulation, , (Taylor and Francis, New York)
dc.relation.referencesPritchett, P.L., Particle-in-cell simulation of plasmas - A tutorial (2003) Space Plasma Simulation, pp. 1-24. , in, edited by J. Büchner, M. Scholer, and C. T. Dum (Springer Berlin Heidelberg, Berlin, Heidelberg)
dc.relation.referencesTreumann, R., Baumjohann, W., Advanced Space Plasma Physics (Imperial C.P., London, 1997)
dc.relation.referencesTskhakaya, D., The particle-in-cell method (2008) Computational Many-Particle Physics, pp. 161-189. , in, edited by H. Fehske, R. Schneider, and A. Weiße (Springer Berlin Heidelberg, Berlin, Heidelberg)
dc.relation.referencesDawson, J.M., Particle simulation of plasmas (1983) Rev. Mod. Phys., 55, pp. 403-447
dc.relation.referencesHockney, R.W., Eastwood, J.W., (1988) Computer Simulation Using Particles, , (Hilger, Bristol)
dc.relation.referencesHutchinson, I., How can slow plasma electron holes exist? (2021) Phys. Rev. E, 104
dc.relation.referencesRajawat, R.S., Sengupta, S., Particle-in-cell simulation of Buneman instability beyond quasilinear saturation (2017) Phys. Plasmas, 24
dc.relation.referencesKoen, E., Collier, A., Maharaj, S., Hellberg, M., Particle-in-cell simulations of ion-acoustic waves with application to Saturn's magnetosphere (2014) Phys. Plasmas, 21
dc.relation.referencesJupyter notebooks for educational plasma physics simulations with PIC https://github.com/UCLA-Plasma-Simulation-Group/JupyterPIC
dc.relation.referencesOmura, Y., Matsumoto, H., (1993) KEMPO1: Technical Guide to One-Dimensional Electromagnetic Particle Code, , (Terra Scientific, Tokyo)
dc.relation.referencesRodríguez-Patiño, D., Ramírez Ramírez, S., Hoyos, J., Salcedo Gallo, J., Restrepo Parra, E., Implementation of the two-dimensional electrostatic particle-in-cell method implementation of the two-dimensional electrostatic particle-in-cell method (2020) Am. J. Phys., 88, pp. 159-167
dc.relation.referencesLapenta, G., Particle-in-cell 1D electrostatic code (2007), https://github.com/valsusa/SkeletonPIC
dc.relation.referencesGomez, S., Hoyos, J.H., Valdivia, J.A., PlasmAPP code (2022), https://github.com/gsara798/PLASMAPP-0.1.git
dc.relation.referencesPlasmAPP code See supplementary material at https://www.scitation.org/doi/suppl/10.1119/5.0135515 for and supplementary notes
dc.relation.referencesReif, F., (1965) Fundamentals of Statistical and Thermal Physics, , (McGraw Hill, Tokyo)
dc.relation.referencesLapenta, G., Kinetic plasma simulation: Particle in cell method (2015), in Proceedings of the XII Carolus Magnus Summer School on Plasma and Fusion Energy Physics (KU Leuven, Belgium)
dc.relation.referencesLedvina, S., Ma, Y., Kallio, E., Modeling and simulating flowing plasmas and related phenomena (2008) Space Sci. Rev., 139, pp. 143-189
dc.relation.referencesGoldston, R., Rutherford, P.H., (2020) Introduction to Plasma Physics, , (CRC Press, Boca Raton, FL)
dc.relation.referencesBittencourt, J.A., (2004) Fundamentals of Plasma Physics, , 3rd ed. (Springer-Verlag, New York)
dc.relation.referencesBellan, P.M., (2006) Fundamentals of Plasma Physics, , (Cambridge U. P., Cambridge)
dc.relation.referencesKrall, N., Trivelpiece, A., Kempton, J., (1973) Principles of Plasma Physics, , International Series in Pure and Applied Physics (McGraw-Hill, New York)
dc.relation.referencesChaudhary, K., Imam, A.M., Rizvi, S.Z.H., Ali, J., (2018) Kinetic Theory, p. 7. , in, edited by G. Z. Kyzas and A. C. Mitropoulos (IntechOpen, Rijeka), Cha
dc.relation.referencesRuhl, H., Mulser, P., Relativistic Vlasov simulation of intense fs laser pulse-matter interaction (1995) Phys. Lett. A, 205, pp. 388-392
dc.relation.referencesPukhov, A., Particle-in-cell codes for plasma-based particle acceleration , pp. 181-206. , Proceedings of the 2014 CAS-CERN Accelerator School: Plasma Wake Acceleration, 23-29 November 2014, Geneva, Switzerland (CERN, Geneva, 2016)
dc.relation.referencesNavarro, R.E., Moya, P.S., Muñoz, V., Araneda, J.A., Viñas, A.F., Valdivia, J.A., (2014) Solar Wind Thermally Induced Magnetic Fluctuations, 112. , Vol. (American Physical Society, College Park, Maryland)
dc.relation.referencesSainia, V., Pandey, S.K., Trivedi, P., Ganesh, R., Coherent phase space structures in a 1D electrostatic plasma using particle-in-cell and Vlasov simulations: A comparative study (2018) Phys. Plasmas, 25
dc.relation.referencesPandey, S.K., Ganesh, R., Landau damping in one dimensional periodic inhomogeneous collisionless plasmas (2021) AIP Adv., 11
dc.relation.referencesBurden, R.L., Faires, J.D., Numerical analysis (1989) The Prindle, Weber and Schmidt Series in Mathematics, , 4th ed., (PWS-Kent Publishing Company, Boston)
dc.relation.referencesBlandón, J.S., Grisales, J.P., Riascos, H., (2017) Electrostatic Plasma Simulation by Particle-In-Cell Method Using ANACONDA Package, 850. , Vol. (IOP Publishing, Bristol)
dc.relation.referencesHutchinson, I., Electron holes in phase space: What they are and why they matter (2017) Phys. Plasmas, 24
dc.relation.referencesChen, F.F., (1974) Introduction to Plasma Physics, , (Plenum Press, New York)
dc.relation.referencesGbaorun, F., John, E.S., Aper, T.M., Daniel, T., Eriba-Idoko, F., Simulation of electron-electron two stream instability (ETSI) (2019) Nigerian Annals of Pure and Applied Sciences, 2, pp. 265-273
dc.relation.referencesLapenta, G., Particle simulations of space weather (2012) Comput. Plasma Phys., 231, pp. 795-821
dc.relation.referencesPickett, J.S., Chen, L.-J., Kahler, S.W., Santolík, O., Goldstein, M.L., Lavraud, B., Décréau, P.M.E., Balogh, A., On the generation of solitary waves observed by cluster in the near-Earth magnetosheath (2005) Nonlin. Processes Geophys., 12, pp. 181-193
dc.relation.referencesCreate Codistributed Array of Normally Distributed Random Numbers https://la.mathworks.com/help/parallel-computing/codistributed.randn.html
dc.relation.referencesReturn a sample (or samples) from the 'standard normal' distribution https://numpy.org/doc/stable/reference/random/generated/numpy.random.randn.html, Numpy
dc.relation.referencesKoskinen, H.E.J., (2011) Physics of Space Storms from the Solar Surface the Earth, , (Springer, Berlin)
dc.relation.referencesMoreno, Q., Dieckmann, M.E., Ribeyre, X., Jequier, S., Tikhonchuk, V.T., D'Humières, E., Impact of the electron to ion mass ratio on unstable systems in particle-in-cell simulations (2018) Phys. Plasmas, 25
dc.relation.referencesGoldman, M.V., Newman, D.L., Ergun, R.E., Phase-space holes due to electron and ion beams accelerated by a current-driven potential ramp (2003) Nonlin. Processes Geophys., 10, pp. 37-44
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record