dc.contributor.author | Gómez-Urrea H.A | |
dc.contributor.author | Cardona J.G | |
dc.contributor.author | Caro-Lopera F.J | |
dc.contributor.author | Mora-Ramos M.E. | |
dc.date.accessioned | 2023-10-24T19:24:24Z | |
dc.date.available | 2023-10-24T19:24:24Z | |
dc.date.created | 2023 | |
dc.identifier.issn | 20408978 | |
dc.identifier.uri | http://hdl.handle.net/11407/7950 | |
dc.description.abstract | Photonic band gap widths and slow-light optical guided modes are theoretically investigated for Bravais-Moiré (BM) photonic crystals (PCs) made of cylindrical dielectric cores which are formed from the combination of two square Bravais lattices. The Moiré pattern forms due to a commensurable rotation of one of these lattices with respect to the other. The analysis of gap maps is made versus the radii of dielectric cores-both rotated and unrotated-contained in the BM unit cell (UC). Guided modes are considered within the framework of coupled-resonator optical waveguides (CROWs), built from the generation of a point defect chain along the direction of electromagnetic wave propagation. For the analyzed structures, rather wide photonic band gaps were found. It was noticed that changing the core radii can significantly affect the dielectric contrast in the UC, leading to wider gaps. In addition, due to the kind of crystal cell structure considered, guided modes with group velocities smaller than those typically observed in PCs with simple square lattices were found for the investigated CROWs. © 2022 IOP Publishing Ltd. | eng |
dc.language.iso | eng | |
dc.publisher | Institute of Physics | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85151042360&doi=10.1088%2f2040-8986%2faca0aa&partnerID=40&md5=104c893a504d9c0a678a7f413474a6d1 | |
dc.source | J. Opt. | |
dc.source | Journal of Optics (United Kingdom) | eng |
dc.subject | 2D photonic crystal | eng |
dc.subject | Bravais-Moiré unit cell | eng |
dc.subject | Coupled resonator optical waveguide | eng |
dc.subject | Photonic gap mapping | eng |
dc.subject | Slow-light | eng |
dc.title | Photonic band gaps and waveguide slow-light propagation in Bravais-Moiré two-dimensional photonic crystals | eng |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ciencias Básicas | spa |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.1088/2040-8986/aca0aa | |
dc.relation.citationvolume | 25 | |
dc.relation.citationissue | 2 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.affiliation | Gómez-Urrea, H.A., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Cardona, J.G., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Facultad de Ciencias Básicas, Universidad Tecnológica de Pereira, Pereira, Colombia | |
dc.affiliation | Caro-Lopera, F.J., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Mora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Morelos, Cuernavaca, CP 62209, Mexico | |
dc.relation.references | Mookherjea, S, Yariv, A, Coupled resonator optical waveguides (2002) IEEE J. Sel. Top. Quantum Electron, 8, p. 448 | |
dc.relation.references | Donnelly, E, La Spada, L, Electromagnetic and thermal nanostructures: from waves to circuits (2020) Eng. Res. Express, 2, p. 015045 | |
dc.relation.references | La Spada, L, Vegni, L, Near-zero-index wires (2017) Opt. Express, 25, p. 23699 | |
dc.relation.references | Pacheco-Peña, V, Engheta, N, Kuznetsov, S, Gentselev, A, Beruete, M, All-metallic epsilon-near-zero graded-index converging lens at terahertz frequencies (2018) 12th European Conf. on Antennas and Propagation (EuCAP 2018), 1. , vol | |
dc.relation.references | Greybush, N J, Pacheco-Peña, V, Engheta, N, Murray, C B, Kagan, C R, Plasmonic optical and chiroptical response of self-assembled Au nanorod equilateral trimmers (2019) ACS Nano, 13, p. 1617 | |
dc.relation.references | Estakhri, N M, Edwards, B, Engheta, N, Inverse-designed metastructures that solve equations (2019) Science, 363, p. 1333 | |
dc.relation.references | La Spada, L, Spooner, C, Haq, S, Hao, Y, Curvilinear metasurfaces for surface wave manipulation (2019) Sci. Rep, 9, p. 3107 | |
dc.relation.references | Lalegani, Z, Seyyed Ebrahimi, S A, Hamawandi, B, La Spada, L, Toprak, M S, Modeling, design and synthesis of gram-scale monodispersed silver nanoparticles using microwave-assisted polyol process for metamaterial applications (2020) Opt. Mater, 108, p. 110381 | |
dc.relation.references | Guo, Z, Jiang, H, Chen, H, Zero-index and hyperbolic metacavities: fundamentals and applications (2022) J. Appl. Phys, 55, p. 083001 | |
dc.relation.references | Lalegani, Z, Seyyed Ebrahimi, S A, Hamawandi, B, La Spada, L, Batili, H, Toprak, M S, Targeted dielectric coating of silver nanoparticles with silica to manipulate optical properties for metasurface applications (2022) Mater. Chem. Phys, 287, p. 126250 | |
dc.relation.references | Pacheco-Peña, V, Beruete, M, Rodríguez-Ulibarri, P, Engheta, N, On the performance of an ENZ-based sensor using transmission line theory and effective medium approach (2019) New J. Phys, 21, p. 043056 | |
dc.relation.references | Akbari, M, Shahbazzadeh, M J, La Spada, L, Khajehzadeh, A, The graphene field effect transistor modeling based on an optimized ambipolar virtual source model for DNA detection (2021) Appl. Sci, 11, p. 8114 | |
dc.relation.references | Joannopoulos, J D, (2007) Photonic Crystals: Molding the Flow of Light, , (Princeton, NJ: Princeton University Press) | |
dc.relation.references | Yablonovitch, E, Inhibited spontaneous emission in solid-state physics and electronics (1987) Phys. Rev. Lett, 58, p. 2059 | |
dc.relation.references | John, S, Strong localization of photons in certain disordered dielectric superlattices (1987) Phys. Rev. Lett, 58, p. 2486 | |
dc.relation.references | Iliew, R, Etrich, C, Pertsch, T, Lederer, F, Slow-light enhanced collinear second-harmonic generation in two dimensional photonic crystals (2008) Phys. Rev. B, 77, p. 115124 | |
dc.relation.references | Dutta, H S, Goyal, A K, Srivastava, V, Pal, S, Coupling light in photonic crystal waveguides: a review (2016) Photon. Nanostruct, 20, p. 41 | |
dc.relation.references | Baba, T, Mori, D, Slow light engineering in photonic crystals (2007) J. Phys. D: Appl. Phys, 40, p. 2659 | |
dc.relation.references | Baba, T, Slow light in photonic crystals (2008) Nat. Photon, 2, p. 465 | |
dc.relation.references | Krauss, T F, Slow light in photonic crystal waveguides (2007) J. Phys. D: Appl. Phys, 40, p. 2666 | |
dc.relation.references | Tang, L, Song, D, Xia, S, Sh, X, J Yan, M, Hu, Y, Xu, J, Chen, Z, Photonic flat-band lattices and unconventional light localization (2020) Nanophotonics, 9, p. 1161. , W, and | |
dc.relation.references | Engelen, R J P, Sugimoto, Y, Watanabe, Y, Korterik, J P, Ikeda, N, van Hulst, N F, Asakawa, K, Kuipers, L, The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides (2006) Opt. Express, 14, p. 1658 | |
dc.relation.references | Sukhoivanov, I A, Guryev, I V, (2009) Photonic Crystals: Physics and Practical Modeling 1st edn, , (Berlin: Springer) | |
dc.relation.references | Olivier, S, Smith, C, Rattier, M, Benisty, H, Weisbuch, C, Krauss, T, Houdre, R, Oesterle, U, Miniband transmission in a photonic crystal coupled-resonator optical waveguide (2001) Opt. Lett, 26, p. 1019 | |
dc.relation.references | Yariv, A, Xu, Y, Lee, R K, Scherer, A, Coupled-resonator optical waveguide: a proposal and analysis (1999) Opt. Lett, 24, p. 711 | |
dc.relation.references | Ch, J, N Johnson, P, Chong, H M H, Jugessur, A S, Day, S, Gallagher, D, De La Rue, R M, Transmission of photonic crystal coupled-resonator waveguide (PhCCRW) structure enhanced via mode matching (2005) Opt. Express, 13, p. 2295 | |
dc.relation.references | Wang, Y, Coupled-resonator optical waveguides in photonic crystals with Archimedean-like tilings (2006) Europhys. Lett, 74, p. 261 | |
dc.relation.references | Martínez, A, García, A, Sanchis, P, Martí, J, Group velocity and dispersion model of coupled-cavity waveguides in photonic crystals (2003) J. Opt. Soc. Am. A, 20, p. 147 | |
dc.relation.references | Karle, T J, Chai, Y J, Morgan, C N, White, I H, Krauss, T F, Observation of pulse compression in photonic crystal coupled cavity waveguides (2004) J. Lightwave Technol, 22, p. 514 | |
dc.relation.references | Mookherjea, S, Yariv, A, Kerr-stabilized super-resonant modes in coupled-resonator optical waveguides (2002) Phys. Rev. E, 66, p. 046610 | |
dc.relation.references | Jin, C J, Sun, Z W, Cheng, B Y, Li, Z L, Zhang, D Z, Microcavities composed of point defects and waveguides in two-dimensional photonic crystals (2001) Opt. Commun, 188, p. 255 | |
dc.relation.references | Ch, J, B Man, Li, Z, Zhang, D, Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region (2000) Phys. Rev. B, 61, p. 10762. , C, B, and | |
dc.relation.references | Cheng, S S M, Li, L-M, Chan, C T, Zhang, Z Q, Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems (1999) Phys. Rev. B, 59, p. 4091 | |
dc.relation.references | Wang, Y, Jin, C, Han, S, Cheng, B, Zhang, D, Defect modes in two-dimensional quasiperiodic photonic crystal (2004) Jpn. J. Appl. Phys, 43, p. 1666 | |
dc.relation.references | David, S, Chelnokov, A, Lourtioz, J-M, Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilings (2000) Opt. Lett, 25, p. 1001 | |
dc.relation.references | Jovanović, D, Gajić, R, Hingerl, K, Refraction and band isotropy in 2D square-like Archimedean photonic crystal lattices (2008) Opt. Express, 16, p. 4048 | |
dc.relation.references | Balci, S, Karabiyik, M, Kosabas, A, Kosabas, C, Aydinli, A, Coupled plasmonic cavities on Moiré surfaces (2010) Plasmonics, 5, p. 429 | |
dc.relation.references | Balci, S, Kocabas, A, Kocabas, C, Aydinli, A, Localization of surface plasmon polaritons in hexagonal arrays of Moiré cavities (2011) Appl. Phys. Lett, 98, p. 031101 | |
dc.relation.references | Lubin, S M, Hryn, A J, Huntington, M D, Engel, C J, Odom, T W, Quasiperiodic Moiré plasmonic crystals (2011) ACS Nano, 98, p. 031101 | |
dc.relation.references | Dong, K, Zhang, T, Li, J, Wang, Q, Yang, F, Rho, Y, Wang, D, Yao, J, Flat bands in magic-angle bilayer photonic crystals at small twists (2021) Phys. Rev. Lett, 126, p. 223601 | |
dc.relation.references | Lou, B, Zhao, N, Minkov, M, Guo, C, Orenstein, M, Fan, S, Theory for twisted bilayer photonic crystal slabs (2021) Phys. Rev. Lett, 126, p. 136101 | |
dc.relation.references | Tang, H, Du, F, Carr, S, DeVault, C, Mello, O, Mazur, E, Modeling the optical properties of twisted bilayer photonic crystals (2021) Light Sci. Appl, 10, p. 157 | |
dc.relation.references | Gómez-Urrea, H A, Ospina-Medina, M C, Correa-Abad, J D, Mora-Ramos, M E, Caro-Lopera, F J, Tunable band structure in 2D Bravais-Moiré photonic crystal lattices (2020) Opt. Commun, 459, p. 125081 | |
dc.relation.references | Gómez-Urrea, H A, Bareño-Silva, J, Caro-Lopera, F J, Mora-Ramos, M E, The influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré lattices Photon (2020) Nanostruct, 42, p. 100845 | |
dc.relation.references | Hennighausen, Z, Kar, S, Twistronics: a turning point in 2D quantum materials (2021) Electron. Struct, 3, p. 014004 | |
dc.relation.references | Cao, Y, Fatemi, V, Fang, S, Watanabe, K, Taniguchi, T, Kaxiras, E, Jarillo-Herrero, P, Unconventional superconductivity in magic-angle graphene superlattices (2018) Nature, 556, p. 43 | |
dc.relation.references | Shallcross, S, Sharma, S, Kandelaki, E, Pankratov, O A, Electronic structure of turbostratic graphene (2010) Phys. Rev. B, 81, p. 165105 | |
dc.relation.references | Shallcross, S, Sharma, S, Pankratov, O A, Document quantum interference at the twist boundary in graphene (2008) Phys. Rev. Lett, 101, p. 056803 | |
dc.relation.references | Shallcross, S, Sharma, S, Pankratov, O A, Erratum: electronic structure of turbostratic graphene (2010) Phys. Rev. B, 81, p. 239904. , (2010 Phys. Rev. B 81 165105) | |
dc.relation.references | Caro-Lopera, F J, (2013) Bravais-Moiré theory Technical Report University of Medellin | |
dc.relation.references | Tiutiunnyk, A, Duque, C A, Caro-Lopera, F J, Mora-Ramos, M E, Correa, J D, Opto-electronic properties of twisted bilayer graphene quantum dots (2019) Physica E, 112, pp. 36-48 | |
dc.relation.references | Leon, A M, Velasquez, E A, Caro-Lopera, F, Mejia-Lopez, J, Tuning magnetic order in CrI3 bilayers via Moiré patterns (2022) Adv. Theory Simul, 5, p. 2100307 | |
dc.relation.references | COMSOL Multiphysics® v. 5.6, , www.comsol.com, (Stockholm, Sweden: COMSOL AB) (available at) | |
dc.relation.references | COMSOL Multiphysics reference guide 2012, , (Stockholm, Sweden) | |
dc.relation.references | COMSOL Multiphysics users guide 2012, , (Stockholm, Sweden) | |
dc.relation.references | Jukam, N, Sherwin, M S, Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si (2003) Appl. Phys. Lett, 83, p. 21 | |
dc.relation.references | Li, Z, Zhang, Y, Li, B, Terahertz photonic crystal switch in silicon based on self-imaging principle (2006) Opt. Express, 14, p. 3887 | |
dc.relation.references | Grischkowsky, D, Keiding, S, van Exter, M, Fattinger, C, Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors (1990) J. Opt. Soc. Am. B, 7, p. 2006 | |
dc.relation.references | Xu, Y, Lee, R K, Yariv, A, Propagation and second harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide (2000) J. Opt. Soc. Am. B, 17, p. 387 | |
dc.relation.references | Soljačić, M, Johnson, S G, Sh, F, M Ippen, Joannopoulos, J D, Photonic-crystal slow-light enhancement of nonlinear phase sensitivity (2002) J. Opt. Soc. Am. B, 19, p. 2052. , I, E and | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |