Mostrar el registro sencillo del ítem

dc.contributor.authorAcosta-Luque M.P
dc.contributor.authorLópez J.E
dc.contributor.authorHenao N
dc.contributor.authorZapata D
dc.contributor.authorGiraldo J.C
dc.contributor.authorSaldarriaga J.F.
dc.date.accessioned2023-10-24T19:24:30Z
dc.date.available2023-10-24T19:24:30Z
dc.date.created2023
dc.identifier.issn20452322
dc.identifier.urihttp://hdl.handle.net/11407/7956
dc.description.abstractSoil contamination by Pb can result from different anthropogenic sources such as lead-based paints, gasoline, pesticides, coal burning, mining, among others. This work aimed to evaluate the potential of P-loaded biochar (Biochar-based slow-release P fertilizer) to remediate a Pb-contaminated soil. In addition, we aim to propose a biomonitoring alternative after soil remediation. First, rice husk-derived biochar was obtained at different temperatures (450, 500, 550, and 600 °C) (raw biochars). Then, part of the resulting material was activated. Later, the raw biochars and activated biochars were immersed in a saturated KH2PO4 solution to produce P-loaded biochars. The ability of materials to immobilize Pb and increase the bioavailability of P in the soil was evaluated by an incubation test. The materials were incorporated into doses of 0.5, 1.0, and 2.0%. After 45 days, soil samples were taken to biomonitor the remediation process using two bioindicators: a phytotoxicity test and enzyme soil activity. Activated P-loaded biochar produced at 500 °C has been found to present the best conditions for soil Pb remediation. This material significantly reduced the bioavailability of Pb and increased the bioavailability of P. The phytotoxicity test and the soil enzymatic activity were significantly correlated with the decrease in bioavailable Pb but not with the increase in bioavailable P. Biomonitoring using the phytotoxicity test is a promising alternative for the evaluation of soils after remediation processes. © 2023, The Author(s).eng
dc.language.isoeng
dc.publisherNature Research
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85147016817&doi=10.1038%2fs41598-022-27043-8&partnerID=40&md5=790bbf33b1a4e3ec14a29f42816a1413
dc.sourceSci. Rep.
dc.sourceScientific Reportseng
dc.titleRemediation of Pb-contaminated soil using biochar-based slow-release P fertilizer and biomonitoring employing bioindicatorseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.type.spaArtículo
dc.identifier.doi10.1038/s41598-022-27043-8
dc.relation.citationvolume13
dc.relation.citationissue1
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationAcosta-Luque, M.P., Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, 111711, Colombia
dc.affiliationLópez, J.E., Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 #65–46, Medellín, 050034, Colombia
dc.affiliationHenao, N., Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, 111711, Colombia
dc.affiliationZapata, D., Faculty of Engineering, Universidad de Medellín, Carrera 87 #30–65, Medellín, 050026, Colombia
dc.affiliationGiraldo, J.C., Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 #65–46, Medellín, 050034, Colombia
dc.affiliationSaldarriaga, J.F., Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, 111711, Colombia
dc.relation.referencesWang, X., Targeted biochar application alters physical, chemical, hydrological and thermal properties of salt-affected soils under cotton-sugarbeet intercropping (2022) Catena (Amst.), 216, p. 106414. , COI: 1:CAS:528:DC%2BB38XitVWgsb7P
dc.relation.referencesSong, B., Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality (2022) Renew. Sustain. Energy Rev., 164, p. 112529. , COI: 1:CAS:528:DC%2BB38XhsV2gu73O
dc.relation.referencesZheng, H., Individual and combined applications of biochar and pyroligneous acid mitigate dissemination of antibiotic resistance genes in agricultural soil (2021) Sci. Total Environ., 796, p. 148962. , COI: 1:CAS:528:DC%2BB3MXhsFGgtbbM
dc.relation.referencesPlaimart, J., Coconut husk biochar amendment enhances nutrient retention by suppressing nitrification in agricultural soil following anaerobic digestate application (2021) Environ. Pollut., 268, p. 115684. , COI: 1:CAS:528:DC%2BB3cXhvFyqtbbF
dc.relation.referencesEl-Bassi, L., Application of olive mill waste-based biochars in agriculture: Impact on soil properties, enzymatic activities and tomato growth (2021) Sci. Total Environ., 755, p. 142531. , COI: 1:CAS:528:DC%2BB3cXitVeiurfI
dc.relation.referencesZhang, F., Zhang, G., Liao, X., Negative role of biochars in the dissipation and vegetable uptake of polycyclic aromatic hydrocarbons (PAHs) in an agricultural soil: Cautions for application of biochars to remediate PAHs-contaminated soil (2021) Ecotoxicol. Environ. Saf., 213, p. 112075. , COI: 1:CAS:528:DC%2BB3MXltFOkt7s%3D
dc.relation.referencesBecerra-Agudelo, E., Assessment of the application of two amendments (lime and biochar) on the acidification and bioavailability of Ni in a Ni-contaminated agricultural soils of northern Colombia (2022) Heliyon, 8. , COI: 1:CAS:528:DC%2BB38XisVOjtLvJ
dc.relation.referencesLópez, J.E., Reducing cadmium bioaccumulation in Theobroma cacao using biochar: Basis for scaling-up to field (2022) Heliyon, 8
dc.relation.referencesLópez, J.E., Adsorption of cadmium using biochars produced from agro-residues (2020) J. Phys. Chem. C, 124, pp. 14592-14602
dc.relation.referencesSun, H., Speciation evolution of phosphorus and sulfur derived from sewage sludge biochar in soil: Ageing effects (2022) Environ. Sci. Technol., 2022, pp. 6639-6646
dc.relation.referencesYu, J., Synergistic role of inherent calcium and iron minerals in paper mill sludge biochar for phosphate adsorption (2022) Sci. Total Environ., 834, p. 155193. , COI: 1:CAS:528:DC%2BB38XhtFKqsLzM
dc.relation.referencesSepúlveda-Cadavid, C., Romero, J.H., Torres, M., Becerra-Agudelo, E., López, J.E., Evaluation of a biochar-based slow-release P fertilizer to improve Spinacia oleracea P use, yield, and nutritional quality (2021) J. Soil Sci. Plant Nutr., 21, pp. 2980-2992
dc.relation.referencesMujtaba Munir, M.A., In situ synthesis of micro-plastics embedded sewage-sludge co-pyrolyzed biochar: Implications for the remediation of Cr and Pb availability and enzymatic activities from the contaminated soil (2021) J. Clean. Prod., 302, p. 127005. , COI: 1:CAS:528:DC%2BB3MXptlajsrY%3D
dc.relation.referencesChen, H., Investigating the pathways of enhanced Pb immobilization by chlorine-loaded biochar (2022) J. Clean. Prod., 344, p. 131097. , COI: 1:CAS:528:DC%2BB38XhtVGisLbE
dc.relation.referencesZhang, P., Preparation of ball-milled phosphorus-loaded biochar and its highly effective remediation for Cd- and Pb-contaminated alkaline soil (2022) Sci. Total Environ., 813, p. 152648. , COI: 1:CAS:528:DC%2BB38XhtVSjuw%3D%3D
dc.relation.referencesWang, J., Emerging risks of toxic metal(loid)s in soil-vegetables influenced by steel-making activities and isotopic source apportionment (2021) Environ. Int., 146, p. 106207. , COI: 1:CAS:528:DC%2BB3cXisVOktL7I
dc.relation.referencesTan, Y., Novel Zn–Fe engineered kiwi branch biochar for the removal of Pb(II) from aqueous solution (2022) J. Hazard Mater., 424, p. 127349. , COI: 1:CAS:528:DC%2BB3MXit1Sju7bF
dc.relation.referencesLuo, Y., Development of phosphorus composite biochar for simultaneous enhanced carbon sink and heavy metal immobilization in soil (2022) Sci. Total Environ., 831, p. 154845. , COI: 1:CAS:528:DC%2BB38XpvVyqsbk%3D
dc.relation.referencesHall, R.L., Phosphorus speciation and fertiliser performance characteristics: A comparison of waste recovered struvites from global sources (2020) Geoderma, 362, p. 114096. , COI: 1:CAS:528:DC%2BB3cXmtVOlsw%3D%3D
dc.relation.referencesJarosz, R., Szerement, J., Gondek, K., Mierzwa-Hersztek, M., The use of zeolites as an addition to fertilisers—A review (2022) Catena (Amst.), 213, p. 106125. , COI: 1:CAS:528:DC%2BB38XmtVaqu7o%3D
dc.relation.referencesLuo, H., Law, W.W., Wu, Y., Zhu, W., Yang, E.H., Hydrothermal synthesis of needle-like nanocrystalline zeolites from metakaolin and their applications for efficient removal of organic pollutants and heavy metals (2018) Microporous Mesoporous Mater., 272, pp. 8-15. , COI: 1:CAS:528:DC%2BC1cXhtFemtLbO
dc.relation.referencesRashmi, I., Biswas, A.K., Kartika, K.S., Kala, S., Phosphorus leaching through column study to evaluate P movement and vertical distribution in black, red and alluvial soils of India (2020) J. Saudi Soc. Agric. Sci., 19, pp. 241-248
dc.relation.referencesZhang, S., Chen, S., Fenton, O., Li, Y., Chen, Q., Enhanced topsoil P leaching in a short term flooded calcareous soil with combined straw and ammonium nitrogen incorporation (2021) Geoderma, 402, p. 115322. , COI: 1:CAS:528:DC%2BB3MXisFegtLrI
dc.relation.referencesShi, Z., Tang, Z., Wang, C., A brief review and evaluation of earthworm biomarkers in soil pollution assessment (2017) Environ. Sci. Pollut. Res., 24, pp. 13284-13294
dc.relation.referencesPascual, J.A., Garcia, C., Hernandez, T., Moreno, J.L., Ros, M., Soil microbial activity as a biomarker of degradation and remediation processes (2000) Soil Biol. Biochem., 32, pp. 1877-1883. , COI: 1:CAS:528:DC%2BD3MXpvVKl
dc.relation.referencesYang, Y.F., Cheng, Y.H., Liao, C.M., In situ remediation-released zero-valent iron nanoparticles impair soil ecosystems health: A C. elegans biomarker-based risk assessment (2016) J. Hazard Mater., 317, pp. 210-220. , COI: 1:CAS:528:DC%2BC28XpsVGrtLs%3D
dc.relation.referencesMorales, L.F., Herrera, K., López, J.E., Saldarriaga, J.F., Use of biochar from rice husk pyrolysis: Assessment of reactivity in lime pastes (2021) Heliyon, 7. , COI: 1:CAS:528:DC%2BB38XitVerur%2FF
dc.relation.referencesHerrera, K., Morales, L.F., Tarazona, N.A., Aguado, R., Saldarriaga, J.F., Use of biochar from rice husk pyrolysis: Part A: Recovery as an adsorbent in the removal of emerging compounds (2022) ACS Omega, 7, pp. 7625-7637. , COI: 1:CAS:528:DC%2BB38XkslKksrs%3D
dc.relation.referencesRodríguez, F., Montoya-Ruiz, C., Estiati, I., Saldarriaga, J.F., Removal of drugs in polluted waters with char obtained by pyrolysis of hair waste from the tannery process (2020) ACS Omega, 5, pp. 24389-24402
dc.relation.referencesFidel, R.B., Laird, D.A., Thompson, M.L., Lawrinenko, M., Characterization and quantification of biochar alkalinity (2017) Chemosphere, 167, pp. 367-373. , COI: 1:CAS:528:DC%2BC28Xhs1yqs7jN
dc.relation.referencesAhmad, M., Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants (2018) Chemosphere, 194, pp. 327-339. , COI: 1:CAS:528:DC%2BC2sXhvFegtL3I
dc.relation.referencesQu, J., KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: Affecting factors, mechanisms and reusability exploration (2021) J. Hazard Mater., 401, p. 123292. , COI: 1:CAS:528:DC%2BB3cXhtlaitLrP
dc.relation.referencesLi, H., Li, Y., Xu, Y., Lu, X., Biochar phosphorus fertilizer effects on soil phosphorus availability (2020) Chemosphere, 244, p. 125471. , COI: 1:CAS:528:DC%2BC1MXitlSqtbfP
dc.relation.referencesZhu, J., Li, M., Whelan, M., Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review (2018) Sci. Total Environ., 612, pp. 522-537. , COI: 1:CAS:528:DC%2BC2sXhsVansb7I
dc.relation.referencesAlbert, H.A., Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: A meta-analysis (2021) Sci. Total Environ., 755, p. 142582. , COI: 1:CAS:528:DC%2BB3cXitFGqtrrE
dc.relation.referencesLi, H., Mechanisms of metal sorption by biochars: Biochar characteristics and modifications (2017) Chemosphere, 178, pp. 466-478. , COI: 1:CAS:528:DC%2BC2sXkvFajtLw%3D
dc.relation.referencesManesh, R.R., Co-exposure to titanium dioxide nanoparticles does not affect cadmium toxicity in radish seeds (Raphanus sativus) (2018) Ecotoxicol. Environ. Saf., 148, pp. 359-366. , COI: 1:CAS:528:DC%2BC2sXhslektL7J
dc.relation.referencesZeng, L.S., Liao, M., Chen, C.L., Huang, C.Y., Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil–lead–rice (Oryza sativa L.) system (2007) Ecotoxicol. Environ. Saf., 67, pp. 67-74. , COI: 1:CAS:528:DC%2BD2sXjvFGms74%3D
dc.relation.referencesIwai, C.B., Noller, B., Ecotoxicological assessment of diffuse pollution using biomonitoring tool for sustainable land use in Thailand (2010) J. Environ. Sci., 22, pp. 858-863
dc.relation.referencesOliveira Resende, A.P., Ecotoxicological risk assessment of contaminated soil from a complex of ceramic industries using earthworm Eisenia fetida (2018) J. Toxicol. Environ. Health A, 81, pp. 1058-1065
dc.relation.referencesProdana, M., Biomonitoring tools for biochar and biochar-compost amended soil under viticulture: Looking at exposure and effects (2019) Appl. Soil. Ecol., 137, pp. 120-128
dc.relation.referencesPei, L., Further reuse of phosphorus-laden biochar for lead sorption from aqueous solution: Isotherm, kinetics, and mechanism (2021) Sci. Total Environ., 792, p. 148550. , COI: 1:CAS:528:DC%2BB3MXhtl2jtrfJ
dc.relation.referencesSepúlveda-Cadavid, C., Romero, J.H., Torres, M., Becerra-Agudelo, E., López, J.E., Evaluation of a biochar-based slow-release p fertilizer to improve Spinacia oleracea P use, yield, and nutritional quality (2021) J. Soil Sci. Plant Nutr.
dc.relation.referencesLópez, J.E., Aspergillus tubingensis and Talaromyces islandicus solubilize rock phosphate under saline and fungicide stress and improve Zea mays growth and phosphorus nutrition (2020) J. Soil Sci. Plant Nutr.
dc.relation.referencesInactivation of Fusarium oxysporum Conidia in Soil with Gaseous Ozone— (2019) Preliminary Studies, pp. 36-42. , https://doi.org/10.1080/01919512.2019.1608810
dc.relation.referencesAdamo, P., Zampella, M., Chemical speciation to assess potentially toxic metals’ (PTMs’) bioavailability and geochemical forms in polluted soils (2008) Environmental Geochemistry: Site Characterization, Data Analysis and Case Histories, pp. 175-212. , Adamo P, Zampella M, (eds), Elsevier
dc.relation.referencesChavez, E., Evaluation of soil amendments as a remediation alternative for cadmium-contaminated soils under cacao plantations (2016) Environ. Sci. Pollut. Res., 23, pp. 17571-17580. , COI: 1:CAS:528:DC%2BC28XptFSmtbs%3D
dc.relation.referencesWhitby, L.M., Hutchinson, T.C., Heavy-metal pollution in the sudbury mining and smelting region of Canada, II. Soil toxicity tests (1974) Environ. Conserv., 1, pp. 191-200. , COI: 1:CAS:528:DyaE2MXlslegsb8%3D
dc.relation.referencesBoularbah, A., Schwartz, C., Bitton, G., Morel, J.L., Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils (2006) Chemosphere, 63, pp. 802-810. , COI: 1:CAS:528:DC%2BD28XjvFWgtLo%3D
dc.relation.referencesKandeler, E., Physiological and biochemical methods for studying soil biota and their functions (2015) Soil Microbiology, Ecology and Biochemistry, pp. 187-222. , Paul EA, (ed), Elsevier
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem