Mostrar el registro sencillo del ítem

dc.contributor.authorJimenez-Orozco C
dc.contributor.authorKoverga A.A
dc.contributor.authorFlórez E
dc.contributor.authorRodriguez J.A.
dc.date.accessioned2023-10-24T19:24:33Z
dc.date.available2023-10-24T19:24:33Z
dc.date.created2023
dc.identifier.issn396028
dc.identifier.urihttp://hdl.handle.net/11407/7963
dc.description.abstractEthylene (C2H4) is a useful hydrocarbon in polymerization reactions and as a probe system to understand hydrogenation reactions of complex unsaturated hydrocarbons and olefins. However, C2H4 streams usually contain small amounts of acetylene (C2H2), which deactivates the catalyst used for ethylene hydroconversions. This issue is overcome by hydrogenating C2H2 selectively into C2H4, avoiding further ethylene hydrogenation reactions. For this process, expensive palladium-based catalysts have shown good performance. Here, based on the results of density functional calculations, we propose the use of cheap and easily available tungsten carbide (WC) as a support of Pt, being an alternative material to Pt-group metals. Clean α-WC(0001)-C and α-WC(0001)-W were compared with Pt-supported on them, i.e. Pt/α-WC(0001)-C and Pt/α-WC(0001)-W. The theoretical results indicate that among the evaluated systems, the Pt/α-WC(0001)-W surface has a remarkable capacity to achieve selective hydrogenation of C2H2 into C2H4, with a reaction energy of -0.44 eV, avoiding further hydrogenation into ethyl (C2H5, +0.29 eV) and ethane (C2H6, +0.33 eV). In Pt/α-WC(0001)-W, the surface poisoning is avoided since ethylidyne (CCH3), a species responsible of catalyst deactivation is not formed. In contrast, the selective acetylene hydrogenation is not feasible on Pt/α-WC(0001)-C, α-WC(0001)-C, and α-WC(0001)-W; these surfaces are all poisoned due to the formation and deposition of CCH3 and C2H2 on them. The atomic charges indicate that the electron density flux from the Pt/α-WC(0001)-W surface to the C2H2 and C2H4 molecules is higher as compared to bare α-WC(0001)-W, since the Pt monolayer modulates electron density migration, as verified by a Projected Density of States (PDOS) analysis. The C2H4 desorption rate from Pt/α-WC(0001)-W is reasonable in the temperature range from 340 to 640 K, providing a theoretical basis for further practical catalysis. The results of this work show that Pt/α-WC(0001)-W is a good candidate for acetylene selective hydrogenation, opening a new window for further experimental and/or theoretical works. © 2022 The Authorseng
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85140289566&doi=10.1016%2fj.susc.2022.122197&partnerID=40&md5=c72ec6d7d9dd7d465bb8d7688e2541b0
dc.sourceSurf Sci
dc.sourceSurface Scienceeng
dc.titleSelective hydrogenation of acetylene to ethylene: Performance of a Pt monolayer over an α-WC(0001) surface for binding and hydroconversion of acetyleneeng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1016/j.susc.2022.122197
dc.relation.citationvolume728
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationJimenez-Orozco, C., Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationKoverga, A.A., Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationFlórez, E., Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationRodriguez, J.A., Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, United States
dc.relation.referencesMei, D., Sheth, P.A., Neurock, M., Smith, C.M., First-principles-based kinetic Monte Carlo simulation of the selective hydrogenation of acetylene over Pd(111) (2006) J. Catal., 242, pp. 1-15
dc.relation.referencesJin, Y., Datye, A.K., Rightor, E., Gulotty, R., Waterman, W., Smith, M., Holbrook, M., Blackson, J., The Influence of Catalyst Restructuring on the Selective Hydrogenation of Acetylene to Ethylene (2001) J. Catal., 203, pp. 292-306
dc.relation.referencesKim, W.-J., Moon, S.H., Modified Pd catalysts for the selective hydrogenation of acetylene (2012) Catal. Today., 185, pp. 2-16
dc.relation.referencesMcCue, A.J., Anderson, J.A., Recent advances in selective acetylene hydrogenation using palladium containing catalysts (2015) Front. Chem. Sci. Eng., 9, pp. 142-153
dc.relation.referencesGonçalves, L.P.L., Wang, J., Vinati, S., Barborini, E., Wei, X.-K., Heggen, M., Franco, M., Kolen'ko, Y.V., Combined experimental and theoretical study of acetylene semi-hydrogenation over Pd/Al2O3 (2020) Int. J. Hydrogen Energy., 45, pp. 1283-1296
dc.relation.referencesBorodziński, A., Bond, G.C., Selective Hydrogenation of Ethyne in Ethene-Rich Streams on Palladium Catalysts. Part 1. Effect of Changes to the Catalyst During Reaction (2006) Catal. Rev., 48, pp. 91-144
dc.relation.referencesJørgensen, M., Grönbeck, H., Selective Acetylene Hydrogenation over Single-Atom Alloy Nanoparticles by Kinetic Monte Carlo (2019) J. Am. Chem. Soc., 141, pp. 8541-8549
dc.relation.referencesJung, U., Elsen, A., Li, Y., Smith, J.G., Small, M.W., Stach, E.A., Frenkel, A.I., Nuzzo, R.G., Comparative in Operando Studies in Heterogeneous Catalysis: Atomic and Electronic Structural Features in the Hydrogenation of Ethylene over Supported Pd and Pt Catalysts (2015) ACS Catal, 5, pp. 1539-1551
dc.relation.referencesCortright, R.D., Goddard, S.A., Rekoske, J.E., Dumesic, J.A., Kinetic study of ethylene hydrogenation (1991) J. Catal., 127, pp. 342-353
dc.relation.referencesPiegsa, A., Korth, W., Demir, F., Jess, A., Hydrogenation and Ring Opening of Aromatic and Naphthenic Hydrocarbons Over Noble Metal (Ir, Pt, Rh)/Al2O3 Catalysts (2012) Catal. Letters., 142, pp. 531-540
dc.relation.referencesDhandapani, B., St. Clair, T., Oyama, S.T., Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide (1998) Appl. Catal. A Gen., 168, pp. 219-228
dc.relation.referencesStudt, F., Abild-Pedersen, F., Bligaard, T., Sørensen, R.Z., Christensen, C.H., Nørskov, J.K., Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene (2008) Science (80-.), 320, pp. 1320-1322
dc.relation.referencesStachurski, J., Fra̧ckiewicz, A., A new phase in the Pd-C system formed during the catalytic hydrogenation of acetylene (1985) J. Less Common Met., 108, pp. 249-256
dc.relation.referencesHwu, H.H., Chen, J.G., Surface chemistry of transition metal carbides (2005) Chem. Rev., 105, pp. 185-212
dc.relation.referencesArdakani, S.J., Smith, K.J., A comparative study of ring opening of naphthalene, tetralin and decalin over Mo2C/HY and Pd/HY catalysts (2011) Appl. Catal. A Gen., 403, pp. 36-47
dc.relation.referencesFrauwallner, M.L., López-Linares, F., Lara-Romero, J., Scott, C.E., Ali, V., Hernández, E., Pereira-Almao, P., Toluene hydrogenation at low temperature using a molybdenum carbide catalyst (2011) Appl. Catal. A Gen., 394, pp. 62-70
dc.relation.referencesPosada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C(001) surfaces (2014) Phys. Chem. Chem. Phys., 16, p. 14912
dc.relation.referencesKoverga, A.A., Flórez, E., Jimenez-Orozco, C., Rodriguez, J.A., Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction (2021) Electrochim. Acta., 368
dc.relation.referencesKoverga, A.A., Flórez, E., Jimenez-Orozco, C., Rodriguez, J.A., Spot the difference: hydrogen adsorption and dissociation on unsupported platinum and platinum-coated transition metal carbides (2021) Phys. Chem. Chem. Phys., 23, pp. 20255-20267
dc.relation.referencesZhang, X., Lu, Z., Yang, Z., A theoretical understanding on the CO-tolerance mechanism of the WC(0001) supported Pt monolayer: Some improvement strategies (2016) Appl. Surf. Sci., 389, pp. 455-461
dc.relation.referencesVasić, D.D., Pašti, I.A., Mentus, S.V., DFT study of platinum and palladium overlayers on tungsten carbide: Structure and electrocatalytic activity toward hydrogen oxidation/evolution reaction (2013) Int. J. Hydrogen Energy., 38, pp. 5009-5018
dc.relation.referencesLiang, Y., Chen, L., Ma, C., Kinetics and thermodynamics of H2O dissociation and CO oxidation on the Pt/WC (0001) surface: A density functional theory study (2017) Surf. Sci., 656, pp. 7-16
dc.relation.referencesLevy, R., Boudart, M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science, 181, pp. 547-549
dc.relation.referencesVértes, G., Horányi, G., Szakács, S., Selective catalytic behaviour of tungsten carbide in the liquid-phase hydrogenation of organic compounds (1973) J. Chem. Soc., Perkin Trans., 2, pp. 1400-1402
dc.relation.referencesKojima, I., Miyakasi, E., Yasunobu, I., Yasumori, I., Catalytic Activities of TiC, WC, and TaC for Hydrogenation of Ethylene (1979) J. Catal., 59, pp. 472-474
dc.relation.referencesJimenez-Orozco, C., Flórez, E., Viñes, F., Rodriguez, J.A., Illas, F., Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study (2020) ACS Catal, 10, pp. 6213-6222
dc.relation.referencesJimenez-Orozco, C., Florez, E., Moreno, A., Rodriguez, J.A., Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: binding and hydrogenation of ethylidyne (2019) J. Phys. Conf. Ser., 1247
dc.relation.referencesBeebe, T.P., Yates, J.T., An in situ infrared spectroscopic investigation of the role of ethylidyne in the ethylene hydrogenation reaction on palladium/alumina (1986) J. Am. Chem. Soc., 108, pp. 663-671
dc.relation.referencesDeng, R., Herceg, E., Trenary, M., Formation and hydrogenation of ethylidene on the Pt(111) surface (2004) Surf. Sci., 560, pp. L195-L201
dc.relation.referencesZhao, Z., Moskaleva, L.V., Aleksandrov, H.A., Basaran, D., Rösch, N., Ethylidyne Formation from Ethylene over Pt(111): A Mechanistic Study from First-Principle Calculations (2010) J. Phys. Chem. C., 114, pp. 12190-12201
dc.relation.referencesGodbey, D., Zaera, F., Yeates, R., Somorjai, G.A., Hydrogenation of chemisorbed ethylene on clean, hydrogen, and ethylidyne covered platinum (111) crystal surfaces (1986) Surf. Sci., 167, pp. 150-166
dc.relation.referencesJimenez-Orozco, C., Flórez, E., Montoya, A., Rodriguez, J.A., Binding and activation of ethylene on tungsten carbide and platinum surfaces (2019) Phys. Chem. Chem. Phys., 21, pp. 17332-17342
dc.relation.referencesKoverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., Promoting effect of tungsten carbide on the catalytic activity of Cu for CO 2 reduction (2020) Phys. Chem. Chem. Phys., 22, pp. 13666-13679
dc.relation.referencesKoverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., CO, CO 2, and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites (2019) J. Phys. Chem. C., 123, pp. 8871-8883
dc.relation.referencesChen, B.W.J., Kirvassilis, D., Bai, Y., Mavrikakis, M., Atomic and Molecular Adsorption on Ag(111) (2019) J. Phys. Chem. C., 123, pp. 7551-7566
dc.relation.referencesKresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set (1996) Phys. Rev. B., 54, pp. 11169-11186
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868
dc.relation.referencesPoliti, J.R.D.S., Viñes, F., Rodriguez, J.A., Illas, F., Atomic and electronic structure of molybdenum carbide phases: bulk and low Miller-index surfaces (2013) Phys. Chem. Chem. Phys., 15, p. 12617
dc.relation.referencesVega, L., Viñes, F., Generalized gradient approximation adjusted to transition metals properties: Key roles of exchange and local spin density (2020) J. Comput. Chem., 41, pp. 2598-2603
dc.relation.referencesBlöchl, P.E., Projector augmented-wave method (1994) Phys. Rev. B., 50, pp. 17953-17979
dc.relation.referencesKresse, G., Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method (1999) Phys. Rev. B., 59, pp. 1758-1775
dc.relation.referencesRamalho, J.P.P., Gomes, J.R.B., Illas, F., Accounting for van der Waals interactions between adsorbates and surfaces in density functional theory based calculations: selected examples (2013) RSC Adv, 3, p. 13085
dc.relation.referencesMonkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations (1976) Phys. Rev. B., 13, pp. 5188-5192
dc.relation.referencesHeard, C.J., Hu, C., Skoglundh, M., Creaser, D., Grönbeck, H., Kinetic Regimes in Ethylene Hydrogenation over Transition-Metal Surfaces (2016) ACS Catal, 6, pp. 3277-3286
dc.relation.referencesBader, R.F.W., Atoms in Molecules: A Quantum Theory (1994), Clarendon Press
dc.relation.referencesJimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces (2016) J. Phys. Chem. C., 120, pp. 13531-13540
dc.relation.referencesYeo, Y.Y., Stuck, A., Wartnaby, C.E., King, D.A., Microcalorimetric study of ethylene adsorption on the Pt{111} surface (1996) Chem. Phys. Lett., 259, pp. 28-36
dc.relation.referencesSpiewak, B., Cortright, R., Dumesic, J., Microcalorimetric Studies of H2, C2H4, and C2H2 Adsorption on Pt Powder (1998) J. Catal., 176, pp. 405-414
dc.relation.referencesPodkolzin, S.G., Alcalá, R., Dumesic, J.A., Density functional theory studies of acetylene hydrogenation on clean, vinylidene- and ethylidyne-covered Pt(111) surfaces (2004) J. Mol. Catal. A Chem., 218, pp. 217-227
dc.relation.referencesLu, X., Liu, L., Li, Y., Guo, W., Zhao, L., Shan, H., Theoretical analysis of the conversion mechanism of acetylene to ethylidyne on Pt(111) (2012) Phys. Chem. Chem. Phys., 14, p. 5642
dc.relation.referencesQiu, Z., Huang, H., Du, J., Tao, X., Xia, Y., Feng, T., Gan, Y., Zhang, W., Biotemplated synthesis of bark-structured TiC nanowires as Pt catalyst supports with enhanced electrocatalytic activity and durability for methanol oxidation (2014) J. Mater. Chem. A., 2, pp. 8003-8008
dc.relation.referencesGriffith, W.P., Melting the Platinum Group Metals (2009) Platin. Met. Rev., 53, pp. 209-215
dc.relation.referencesKurlov, A.S., Gusev, A.I., Tungsten carbides and W-C phase diagram (2006) Inorg. Mater., 42, pp. 121-127
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem