Mostrar el registro sencillo del ítem

dc.contributor.authorAlvarez-Ricardo Y
dc.contributor.authorMeza-Morales W
dc.contributor.authorObregón-Mendoza M.A
dc.contributor.authorToscano R.A
dc.contributor.authorNúñez-Zarur F
dc.contributor.authorGermán-Acacio J.M
dc.contributor.authorPuentes-Díaz N
dc.contributor.authorAlí-Torres J
dc.contributor.authorArenaza-Corona A
dc.contributor.authorRamírez-Apan M.T
dc.contributor.authorMorales-Morales D
dc.contributor.authorEnríquez R.G.
dc.date.accessioned2023-10-24T19:24:34Z
dc.date.available2023-10-24T19:24:34Z
dc.date.created2023
dc.identifier.issn222860
dc.identifier.urihttp://hdl.handle.net/11407/7970
dc.description.abstractThe benzylation reaction of curcumin and tetrahydrocurcumin (THC) with benzyl bromide and potassium carbonate in acetone was investigated. It was found that curcumin undergoes O-alkylation first, followed by C-1 substitution. In contrast, THC undergoes these reactions in reverse order, which was further explained by DFT calculations showing a clear energetic preference (19.5 Kcal/mol) for the C-1 versus the O-alkylation reaction of THC. In addition, the antioxidant activities on lipid peroxidation and cytotoxic activities of both benzylated derivatives were studied, showing that the C-dibenzylated curcuminoid (C-DiBn, 2b), exerts a superior activity than both tribenzylated (TriBn, 2c) and tetrabenzylated (TetraBn, 2d) curcuminoid derivatives in both essays. A DFT theoretical study to explain the experimental results and the preferences for the nucleophilic attack between the phenolic oxygen or C-1 anions was conducted. Furthermore, docking calculations on a DNA fragment shed light on the potential factors affecting the biological activity of these benzylated curcuminoids. © 2022 Elsevier B.V.eng
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85140596298&doi=10.1016%2fj.molstruc.2022.134355&partnerID=40&md5=0fcd20b755d8ec3602b5883e99e21e2c
dc.sourceJ. Mol. Struct.
dc.sourceJournal of Molecular Structureeng
dc.subjectBenzylationeng
dc.subjectCurcumineng
dc.subjectCytotoxicityeng
dc.subjectTBARSeng
dc.subjectTetrahydrocurcumineng
dc.titleSynthesis, characterization, theoretical studies and antioxidant and cytotoxic evaluation of a series of Tetrahydrocurcumin (THC)-benzylated derivativeseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1016/j.molstruc.2022.134355
dc.relation.citationvolume1273
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationAlvarez-Ricardo, Y., Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, C.P., Ciudad de México, 04510, Mexico
dc.affiliationMeza-Morales, W., Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, C.P., Ciudad de México, 04510, Mexico
dc.affiliationObregón-Mendoza, M.A., Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, C.P., Ciudad de México, 04510, Mexico
dc.affiliationToscano, R.A., Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, C.P., Ciudad de México, 04510, Mexico
dc.affiliationNúñez-Zarur, F., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 N° 30-65, Medellín, 050026, Colombia
dc.affiliationGermán-Acacio, J.M., Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, C.P., Ciudad de México, 14000, Mexico
dc.affiliationPuentes-Díaz, N., Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá111321, Colombia
dc.affiliationAlí-Torres, J., Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá111321, Colombia
dc.affiliationArenaza-Corona, A., Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, C.P., Ciudad de México, 04510, Mexico
dc.affiliationRamírez-Apan, M.T., Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, C.P., Ciudad de México, 04510, Mexico
dc.affiliationMorales-Morales, D., Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, C.P., Ciudad de México, 04510, Mexico
dc.affiliationEnríquez, R.G., Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, C.P., Ciudad de México, 04510, Mexico
dc.relation.referencesMounce, B.C., Cesaro, T., Carrau, L., Vallet, T., Vignuzzi, M., Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding (2017) Antiviral Res., 142, pp. 148-157
dc.relation.referencesSardi, O., Polaquini, C.R., Freires, I.A., Livia, C., Antibacterial activity of diacetylcurcumin against Staphylococcus aureus results in decreased biofilm and cellular adhesion (2017) J. Med. Microbiol., 66, pp. 816-824
dc.relation.referencesEsatbeyoglu, T., Huebbe, P., Ernst, I.M.A., Chin, D., Wagner, A.E., Rimbach, G., Curcumin-from molecule to biological function (2012) Angew. Chemie Int. Ed., 51, pp. 5308-5332
dc.relation.referencesGopi, S., Jacob, J., Mathur, K.Y., Acute and subchronic oral toxicity studies of hydrogenated curcuminoid formulation ‘CuroWhite’ in rats (2016) Toxicol. Reports., 3, pp. 817-825
dc.relation.referencesGao, F., Chen, M., Yu, J., Xu, L., Yu, L., Jiang, H., Gu, Z., Tetrahydrocurcumin protects against nonalcoholic fatty liver disease by improving lipid metabolism and redox homeostasis (2022) J. Funct. Foods., p. 89
dc.relation.referencesTruong, T.H., Alcantara, K.P., Bulatao, B.P.I., Sorasitthiyanukarn, F.N., Muangnoi, C., Nalinratana, N., Vajragupta, O., Rojsitthisak, P., Chitosan-coated nanostructured lipid carriers for transdermal delivery of tetrahydrocurcumin for breast cancer therapy (2022) Carbohydr. Polym., 288
dc.relation.referencesLai, C.S., Ho, C.T., Pan, M.H., The cancer chemopreventive and therapeutic potential of tetrahydrocurcumin (2020) Biomolecules, 10
dc.relation.referencesLiu, B., Xia, M., Ji, X., Xu, L., Dong, J., Synthesis and antiproliferative effect of novel curcumin analogues (2013) Chem. Pharm. Bull., 61, pp. 757-763
dc.relation.referencesVallribera, A., Marquet, J., Moreno-Mañas, M., Cayón, E., Mechanistic studies on the alkylation of pentane-2,4-dione through its Co(II) complex (1993) Tetrahedron, 49, pp. 6437-6450
dc.relation.referencesChristoffers, J., Facile nBu4NF mediated benzylation of congested 1,3-diketones (1999) Synth. Commun., 29, pp. 117-122
dc.relation.referencesBoonroeng, S., Srikulkit, K., Xin, J.H., He, L., (2015), https://doi.org/10.1007/s12221-015-4585-6, Preparation of a novel cationic curcumin and its properties evaluation on cotton fabric, Fibers Polym. 16 2426–2431
dc.relation.referencesMeza-Morales, W., Machado-Rodriguez, J., Alvarez-Ricardo, Y., Obregón-Mendoza, M., Nieto-Camacho, A., Toscano, R., Soriano-García, M., Enríquez, R., A new family of homoleptic copper complexes of curcuminoids: synthesis, characterization and biological properties (2019) Molecules, 24, p. 910
dc.relation.referencesGirija, C.R., Begum, N.S., Syed, A.A., Thiruvenkatam, V., Hydrogen-bonding and C-H⋯π interactions in 1,7-bis(4-hydroxy-3- methoxyphenyl)heptane-3,5-dione (tetrahydrocurcumin) (2004) Acta Crystallogr. Sect. C Cryst. Struct. Commun., 60, pp. 611-613
dc.relation.referencesSanphui, P., Goud, N.R., Khandavilli, U.B.R., Nangia, A., Fast dissolving curcumin cocrystals (2011) Cryst. Growth Des., 11, pp. 4135-4145
dc.relation.referencesKong, X., Brinkmann, A., Terskikh, V., Wasylishen, R.E., Bernard, G.M., Duan, Z., Wu, Q., Wu, G., Proton probability distribution in the O⋯H⋯O low-barrier hydrogen bond: a combined solid-state NMR and quantum chemical computational study of dibenzoylmethane and curcumin (2016) J. Phys. Chem. B., 120, pp. 11692-11704
dc.relation.referencesGilli, G., Bellucci, F., Ferretti, V., Bertolasi, V., Evidence for Resonance-Assisted Hydrogen Bonding from Crystal-Structure Correlations on the Enol Form of the β-Diketone Fragment (1989) J. Am. Chem. Soc., 111, pp. 1023-1028
dc.relation.referencesMcKenzie, R.H., Bekker, C., Athokpam, B., Ramesh, S.G., Effect of quantum nuclear motion on hydrogen bonding (2014) J. Chem. Phys., p. 140
dc.relation.referencesMacRae, C.F., Sovago, I., Cottrell, S.J., Galek, P.T.A., McCabe, P., Pidcock, E., Platings, M., Wood, P.A., Mercury 4.0: from visualization to analysis, design and prediction (2020) J. Appl. Crystallogr., 53, pp. 226-235
dc.relation.referencesBernstein, J., Davis, R.E., Shimoni, L., Chang, N.-L., Patterns in hydrogen bonding: functionality and graph set analysis in crystals (1995) Angew. Chemie Int. Ed. eng, 34, pp. 1555-1573
dc.relation.referencesSpackman, P.R., Turner, M.J., McKinnon, J.J., Wolff, S.K., Grimwood, D.J., Jayatilaka, D., Spackman, M.A., CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals (2021) J. Appl. Crystallogr., 54, pp. 1006-1011
dc.relation.referencesMcKinnon, J.J., Jayatilaka, D., Spackman, M.A., Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces (2007) Chem. Commun., pp. 3814-3816
dc.relation.referencesPortes, E., Gardrat, C., Castellan, A., A comparative study on the antioxidant properties of tetrahydrocurcuminoids and curcuminoids (2007) Tetrahedron, 63, pp. 9092-9099
dc.relation.referencesGalano, A., Raúl Alvarez-Idaboy, J., Computational strategies for predicting free radical scavengers’ protection against oxidative stress: where are we and what might follow? (2019) Int. J. Quantum Chem., 119, pp. 1-23
dc.relation.referencesAlisi, I.O., Uzairu, A., Abechi, S.E., Molecular design of curcumin analogues with potent antioxidant properties and thermodynamic evaluation of their mechanism of free radical scavenge (2020) Bull. Natl. Res. Cent., p. 44
dc.relation.referencesKelly, C.P., Cramer, C.J., Truhlar, D.G., Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton (2006) J. Phys. Chem. B., 110, pp. 16066-16081
dc.relation.referencesAlí-Torres, J., Rodríguez-Santiago, L., Sodupe, M., Computational calculations of pKa values of imidazole in Cu(ii) complexes of biological relevance (2011) Phys. Chem. Chem. Phys., 13, pp. 7852-7861
dc.relation.referencesAggarwal, B.B., Deb, L., Prasad, S., Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses (2015) Molecules, 20, pp. 185-205
dc.relation.referencesNishio, M., CH/π hydrogen bonds in crystals (2004) CrystEngComm, 6, pp. 130-158
dc.relation.referencesAlí-Torres, J., Rimola, A., Rodríguez-Rodríguez, C., Rodríguez-Santiago, L., Sodupe, M., Insights on the binding of thioflavin derivative markers to amyloid-like fibril models from quantum chemical calculations (2013) J. Phys. Chem. B., 117, pp. 6674-6680
dc.relation.referencesFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Hratchian, H.P., (2016), D.J.F.J.V., Gaussian 16
dc.relation.referencesRassolov, V.A., Ratner, M.A., Pople, J.A., Redfern, P.C., Curtiss, L.A., 6-31G
dc.relation.referencesbasis set for third-row atoms (2001) J. Comput. Chem., 22, pp. 976-984
dc.relation.referencesHariharan, P.C., Pople, J.A., The influence of polarization functions on molecular orbital hydrogenation energies (1973) Theor. Chim. Acta., 28, pp. 213-222
dc.relation.referencesHehre, W.J., Ditchfield, K., Pople, J.A., Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules (1972) J. Chem. Phys., 56, pp. 2257-2261
dc.relation.referencesBecke, A.D., Density-functional thermochemistry. III. The role of exact exchange (1993) J. Chem. Phys., 98, pp. 5648-5652
dc.relation.referencesLee, C., Yang, W., Parr, G.R., Maintainng a heathy rhythm (1998) Phys. Rev. B., 37, pp. 785-789
dc.relation.referencesStephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J., Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields (1994) J. Phys. Chem., 98, pp. 11623-11627
dc.relation.referencesZhao, Y., Truhlar, D.G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function (2008) Theor. Chem. Acc., 120, pp. 215-241
dc.relation.referencesChai, J.D., Head-Gordon, M., Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections (2008) Phys. Chem. Chem. Phys., 10, pp. 6615-6620
dc.relation.referencesZych, D., Slodek, A., Acceptor-π-Acceptor-Acceptor/Donor systems containing dicyanovinyl acceptor group with substituted 1,2,3-triazole motif – synthesis, photophysical and theoretical studies (2020) J. Mol. Struct., 1204
dc.relation.referencesZycha, D., Slodek, A., Sensitizers for DSSC containing triazole motif with acceptor/donor substituents–Correlation between theoretical and experimental data in prediction of consistent photophysical parameters (2020) J. Mol. Struct., 1207
dc.relation.referencesGrimme, S., Antony, J., Ehrlich, S., Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu (2010) J. Chem. Phys., p. 132
dc.relation.referencesGrimme, S., Ehrlich, S., Goerigk, L., Effect of the damping function in dispersion corrected density functional theory (2011) J. Comput. Chem., 32, pp. 1456-1465
dc.relation.referencesMarenich, A.V., Cramer, C.J., Truhlar, D.G., Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions (2009) J. Phys. Chem. B., 113, pp. 6378-6396
dc.relation.referencesDomínguez, M., Nieto, A., Marin, J.C., Keck, A.S., Jeffery, E., Céspedes, C.L., Antioxidant activities of extracts from Barkleyanthus salicifolius (Asteraceae) and Penstemon gentianoides (Scrophulariaceae) (2005) J. Agric. Food Chem., 53, pp. 5889-5895
dc.relation.referencesRossato, J.I., Ketzer, L.A., Centurião, F.B., Silva, S.J.N., Lüdtke, D.S., Zeni, G., Braga, A.L., Da Rocha, J.B.T., Antioxidant properties of new chalcogenides against lipid peroxidation in rat brain (2002) Neurochem. Res., 27, pp. 297-303
dc.relation.referencesLowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the Folin phenol reagent (1951) J. Biol. Chem., 193, pp. 265-275
dc.relation.referencesNg, T., Liu, F., Wang, Z., Antioxidative activity of natural products from plants (2000) Life Sci, 66, pp. 709-723
dc.relation.referencesOhkawa, H., Ohishi, N., Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction (1979) Anal. Biochem., 95, pp. 351-358
dc.relation.referencesEsterbauer, H., Cheeseman, K.H., Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal (1990) Methods Enzymol, 186, pp. 407-421
dc.relation.referencesChaparro, D., Flores-Gaspar, A., Alí-Torres, J., Computational design of copper ligands with controlled metal chelating, pharmacokinetics, and redox properties for alzheimer's disease (2021) J. Alzheimer's Dis., 82, pp. S179-S193
dc.relation.referencesChaparro, D., Alí-Torres, J., Assessment of the isodesmic method in the calculation of standard reduction potential of copper complexes (2017) J. Mol. Model., p. 23
dc.relation.referencesMonks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Boyd, M., Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines (1991) J. Natl. Cancer Inst., 83, pp. 757-766
dc.relation.referencesSumantran, V.N., Cellular chemosensitivity assays: an overview (2011) Methods Mol. Biol., 731, pp. 219-236
dc.relation.referencesConcepción Lozada, M., Soria-Arteche, O., Teresa Ramírez Apan, M., Nieto-Camacho, A., Enríquez, R.G., Izquierdo, T., Jiménez-Corona, A., Synthesis, cytotoxic and antioxidant evaluations of amino derivatives from perezone (2012) Bioorganic Med. Chem., 20, pp. 5077-5084
dc.relation.referencesDrew, H.R., Wing, R.M., Takano, T., Broka, C., Tanaka, S., Itakura, K., Dickerson, R.E., Structure of a B-DNA dodecamer: conformation and dynamics (1981) Proc. Natl. Acad. Sci. U. S. A., 78, pp. 2179-2183
dc.relation.referencesBackman-Blanco, G., Valdés, H., Ramírez-Apan, M.T., Cano-Sanchez, P., Hernandez-Ortega, S., Orjuela, A.L., Alí-Torres, J., Morales-Morales, D., Synthesis of Pt(II) complexes of the type [Pt(1,10-phenanthroline)(SArFn)2] (SArFn = SC6H3-3,4-F2
dc.relation.referencesSC6F4-4-H
dc.relation.referencesSC6F5). Preliminary evaluation of their in vitro anticancer activity (2020) J. Inorg. Biochem., 211
dc.relation.referencesMorris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., AutoDock4 and autodocktools4: automated docking with selective receptor flexibility (2012) J. Comput. Chem., 30, pp. 2785-2791
dc.relation.references(2021), Schrödinger, Schrödinger Release 2021-4: maestro
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem