Show simple item record

dc.contributor.authorJimenez-Orozco C
dc.contributor.authorFlórez E
dc.contributor.authorRodriguez J.A.
dc.date.accessioned2023-10-24T19:24:35Z
dc.date.available2023-10-24T19:24:35Z
dc.date.created2023
dc.identifier.issn18673880
dc.identifier.urihttp://hdl.handle.net/11407/7977
dc.description.abstractTungsten carbide (WC) displays a Pt-like behavior in catalysis, applied in hydrogenation processes. Numerous theoretical studies have modeled the behavior and use of adsorbed hydrogen without obtaining a general picture, missing basic links between H2 dissociation and generation of high surface coverage (ΘH>0.5 ML). Here, the capability of C- and W-terminations of the α-WC(0001) surface is analyzed to dissociate several H2 molecules to produce coverages, ΘH, ranging from low to very high values (0.13<ΘH<2.00 ML). Density functional theory and an ab initio atomistic thermodynamic were used to achieve the conditions for H2 dissociation. The WC−C surface has higher capacity to dissociate H2 molecules than WC−W. However, both surfaces can reach full surface coverage, ΘH=1 ML, at mild ambient conditions, T=300 K and P=1 atm, and even up to 500 K at low and high pressures. The H-adatoms on WC−W are more labile than on WC−C. The binding of adsorbates is hindered at high ΘH, implying a need to modulate ΘH according to the application. The results give the basis to understand the capabilities of WC-based catalysts in hydrogenation-related reactions, with the advantage of WC being a hydrogen reservoir at mild practical catalytic conditions. © 2023 Wiley-VCH GmbH.eng
dc.language.isoeng
dc.publisherJohn Wiley and Sons Inc
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85159644285&doi=10.1002%2fcctc.202300165&partnerID=40&md5=d1cbc9dff875d687db0bee51af26bf62
dc.sourceChemCatChem
dc.sourceChemCatChemeng
dc.subjectCoverageeng
dc.subjectDFTeng
dc.subjectHydrogeneng
dc.subjectSurface scienceeng
dc.subjectTungsten carbideeng
dc.titleThe α-WC(0001) Surface as a Hydrogen Sponge: A First Principle Study of H2 Dissociation and Formation of Low and High Coverageseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1002/cctc.202300165
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationJimenez-Orozco, C., Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationFlórez, E., Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationRodriguez, J.A., Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, United States
dc.relation.referencesLevy, R.B., Boudart, M., (1973) Science., 181, pp. 547-549
dc.relation.referencesWilson, J.N., Otvos, J.W., Stevenson, D.P., Wagner, C.D., (1953) Ind. Eng. Chem., 45, pp. 1480-1487
dc.relation.referencesMoreno-Castilla, C., Alvarez-Merino, M.A., Carrasco-Marín, F., Fierro, J.L.G., (2001) Langmuir., 17, pp. 1752-1756
dc.relation.referencesViñes, F., Sousa, C., Liu, P., Rodriguez, J.A., Illas, F., (2005) J. Chem. Phys., 122
dc.relation.referencesBennett, L.H., Cuthill, J.R., Mcalister, J., Erickson, N.E., Watson, R.E., (1974) Science., 184, pp. 563-565
dc.relation.referencesHwu, H., Chen, J., (2005) Chem. Rev., 105, pp. 185-212
dc.relation.referencesLuo, N., Hou, Z., Chai, G.-L., (2022) Appl. Surf. Sci., 591
dc.relation.referencesJimenez-Orozco, C., Flórez, E., Montoya, A., Rodriguez, J.A., (2019) Phys. Chem. Chem. Phys., 21, p. 17332
dc.relation.referencesKurlov, A.S., Gusev, A.I., Phases and Equilibria in the W−C and W−Co–C Systems (2013) In: Tungsten Carbides. Springer Series in Materials Science, 184, p. 5. , Springer, Cham
dc.relation.referencesSuetin, D., Shein, I.R., Ivanovskii, A.L., (2009) J. Phys. Chem. Solids, 70, pp. 64-71
dc.relation.referencesLi, Y., Gao, Y., Xiao, B., Min, T., Fan, Z., Ma, S., Yi, D., (2011) Comput. Mater. Sci., 50, pp. 939-948
dc.relation.referencesCosta, P.D., Lemberton, J., Potvin, C., Manoli, J., Perot, G., Breysse, M., Djega-Mariadassou, G., (2001) Catal. Today., 65, pp. 195-200
dc.relation.referencesQi, S., Yue, J., Li, Y., Huang, J., Yi, C., Yang, B., (2014) Catal. Lett., 144, pp. 1443-1449
dc.relation.referencesMorsea, J.R., Juneau, M., Baldwin, J.W., Porosoff, M.D., Willauer, H.D., (2020) J. CO2 Util., 35, pp. 38-46
dc.relation.referencesHumbert, M.P., Menning, C.A., Chen, J.G., (2010) J. Catal., 271, pp. 132-139
dc.relation.referencesJimenez-Orozco, C., Flórez, E., Viñes, F., Rodriguez, J.A., Illas, F., (2020) ACS Catal., 10, pp. 6213-6222
dc.relation.referencesKoverga, A.A., Flórez, E., Jimenez-Orozco, C., Rodriguez, J.A., (2021) Phys. Chem. Chem. Phys., 23, p. 20255
dc.relation.referencesShi, Q., Sun, R., (2017) Comput. Theor. Chem., 1106, pp. 43-49
dc.relation.referencesXi, Y., Huang, L., Forrey, R.C., Cheng, H., (2014) RSC Adv., 4, pp. 39912-39919
dc.relation.referencesRao, X., Lou, Y., Zhou, Y., Zhang, J., Zhong, S., (2021) Appl. Surf. Sci., 566
dc.relation.referencesSiegel, D., Hector, L.G., Adams, J.B., (2002) Suf. Sci., 498, pp. 321-336
dc.relation.referencesKresse, G., Furthmüller, J., (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, pp. 3865-3868
dc.relation.referencesGrimme, S., Antony, J., Ehrlich, S., Krieg, H., (2010) J. Chem. Phys., 132
dc.relation.referencesJimenez-Orozco, C., Figueras, M., Flórez, E., Viñes, F., Rodriguez, J.A., Illas, F., (2022) Phys. Chem. Chem. Phys., 24, pp. 16556-16565
dc.relation.referencesKoverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., (2019) J. Phys. Chem. C., 123, pp. 8871-8883
dc.relation.referencesBlöchl, P.E., (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979
dc.relation.referencesKresse, G., Joubert, D., (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 1758-1775
dc.relation.referencesMonkhorst, H.J., Pack, J.D., (1976) Phys. Rev. B., 13, pp. 5188-5192
dc.relation.referencesKoverga, A.A., Flórez, E., Rodriguez, J.A., (2021) Int. J. Hydrogen Energy, 46, pp. 25092-25102
dc.relation.referencesJimenez-Orozco, C., Koverga, A.A., Flórez, E., Rodríguez, J.A., (2023) Surf. Sci., 728
dc.relation.referencesBader, R., (1990) Atoms in Molecules: A Quantum Theory, , Oxford University Press, New York
dc.relation.referencesMarinelli, F., Jelea, A., Allouche, A., (2007) Surf. Sci., 601, pp. 578-587
dc.relation.referencesGaston, N., Hendy, S., (2009) Catal. Today., 146, pp. 223-229
dc.relation.referencesVasić, D.D., Pašti, I.A., Mentus, S.V., (2013) Int. J. Hydrogen Energy, 38, pp. 5009-5018
dc.relation.referencesMa, C., Liu, T., Chen, L., (2010) Appl. Surf. Sci., 256, pp. 7400-7405
dc.relation.referencesZhang, Y., Zhang, X., Yang, Z., (2019) Int. J. Hydrogen Energy, 44, pp. 3115-3120
dc.relation.referencesZhang, Y., Yang, Z., (2019) J. Alloys Compd., 775, pp. 330-334
dc.relation.referencesPrats, H., Piñero, J.J., Viñes, F., Bromley, S.T., Sayós, R., Illas, F., (2019) Chem. Commun., 55, pp. 12797-12800
dc.relation.referencesPiñero, J.J., Ramírez, P.J., Bromley, S.T., Illas, F., Viñes, F., Rodriguez, J.A., (2018) J. Phys. Chem. C., 122, pp. 28013-28020
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record