dc.contributor.author | Jimenez-Orozco C | |
dc.contributor.author | Flórez E | |
dc.contributor.author | Rodriguez J.A. | |
dc.date.accessioned | 2023-10-24T19:24:35Z | |
dc.date.available | 2023-10-24T19:24:35Z | |
dc.date.created | 2023 | |
dc.identifier.issn | 18673880 | |
dc.identifier.uri | http://hdl.handle.net/11407/7977 | |
dc.description.abstract | Tungsten carbide (WC) displays a Pt-like behavior in catalysis, applied in hydrogenation processes. Numerous theoretical studies have modeled the behavior and use of adsorbed hydrogen without obtaining a general picture, missing basic links between H2 dissociation and generation of high surface coverage (ΘH>0.5 ML). Here, the capability of C- and W-terminations of the α-WC(0001) surface is analyzed to dissociate several H2 molecules to produce coverages, ΘH, ranging from low to very high values (0.13<ΘH<2.00 ML). Density functional theory and an ab initio atomistic thermodynamic were used to achieve the conditions for H2 dissociation. The WC−C surface has higher capacity to dissociate H2 molecules than WC−W. However, both surfaces can reach full surface coverage, ΘH=1 ML, at mild ambient conditions, T=300 K and P=1 atm, and even up to 500 K at low and high pressures. The H-adatoms on WC−W are more labile than on WC−C. The binding of adsorbates is hindered at high ΘH, implying a need to modulate ΘH according to the application. The results give the basis to understand the capabilities of WC-based catalysts in hydrogenation-related reactions, with the advantage of WC being a hydrogen reservoir at mild practical catalytic conditions. © 2023 Wiley-VCH GmbH. | eng |
dc.language.iso | eng | |
dc.publisher | John Wiley and Sons Inc | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159644285&doi=10.1002%2fcctc.202300165&partnerID=40&md5=d1cbc9dff875d687db0bee51af26bf62 | |
dc.source | ChemCatChem | |
dc.source | ChemCatChem | eng |
dc.subject | Coverage | eng |
dc.subject | DFT | eng |
dc.subject | Hydrogen | eng |
dc.subject | Surface science | eng |
dc.subject | Tungsten carbide | eng |
dc.title | The α-WC(0001) Surface as a Hydrogen Sponge: A First Principle Study of H2 Dissociation and Formation of Low and High Coverages | eng |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ciencias Básicas | spa |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.1002/cctc.202300165 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.affiliation | Jimenez-Orozco, C., Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia | |
dc.affiliation | Flórez, E., Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia | |
dc.affiliation | Rodriguez, J.A., Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, United States | |
dc.relation.references | Levy, R.B., Boudart, M., (1973) Science., 181, pp. 547-549 | |
dc.relation.references | Wilson, J.N., Otvos, J.W., Stevenson, D.P., Wagner, C.D., (1953) Ind. Eng. Chem., 45, pp. 1480-1487 | |
dc.relation.references | Moreno-Castilla, C., Alvarez-Merino, M.A., Carrasco-Marín, F., Fierro, J.L.G., (2001) Langmuir., 17, pp. 1752-1756 | |
dc.relation.references | Viñes, F., Sousa, C., Liu, P., Rodriguez, J.A., Illas, F., (2005) J. Chem. Phys., 122 | |
dc.relation.references | Bennett, L.H., Cuthill, J.R., Mcalister, J., Erickson, N.E., Watson, R.E., (1974) Science., 184, pp. 563-565 | |
dc.relation.references | Hwu, H., Chen, J., (2005) Chem. Rev., 105, pp. 185-212 | |
dc.relation.references | Luo, N., Hou, Z., Chai, G.-L., (2022) Appl. Surf. Sci., 591 | |
dc.relation.references | Jimenez-Orozco, C., Flórez, E., Montoya, A., Rodriguez, J.A., (2019) Phys. Chem. Chem. Phys., 21, p. 17332 | |
dc.relation.references | Kurlov, A.S., Gusev, A.I., Phases and Equilibria in the W−C and W−Co–C Systems (2013) In: Tungsten Carbides. Springer Series in Materials Science, 184, p. 5. , Springer, Cham | |
dc.relation.references | Suetin, D., Shein, I.R., Ivanovskii, A.L., (2009) J. Phys. Chem. Solids, 70, pp. 64-71 | |
dc.relation.references | Li, Y., Gao, Y., Xiao, B., Min, T., Fan, Z., Ma, S., Yi, D., (2011) Comput. Mater. Sci., 50, pp. 939-948 | |
dc.relation.references | Costa, P.D., Lemberton, J., Potvin, C., Manoli, J., Perot, G., Breysse, M., Djega-Mariadassou, G., (2001) Catal. Today., 65, pp. 195-200 | |
dc.relation.references | Qi, S., Yue, J., Li, Y., Huang, J., Yi, C., Yang, B., (2014) Catal. Lett., 144, pp. 1443-1449 | |
dc.relation.references | Morsea, J.R., Juneau, M., Baldwin, J.W., Porosoff, M.D., Willauer, H.D., (2020) J. CO2 Util., 35, pp. 38-46 | |
dc.relation.references | Humbert, M.P., Menning, C.A., Chen, J.G., (2010) J. Catal., 271, pp. 132-139 | |
dc.relation.references | Jimenez-Orozco, C., Flórez, E., Viñes, F., Rodriguez, J.A., Illas, F., (2020) ACS Catal., 10, pp. 6213-6222 | |
dc.relation.references | Koverga, A.A., Flórez, E., Jimenez-Orozco, C., Rodriguez, J.A., (2021) Phys. Chem. Chem. Phys., 23, p. 20255 | |
dc.relation.references | Shi, Q., Sun, R., (2017) Comput. Theor. Chem., 1106, pp. 43-49 | |
dc.relation.references | Xi, Y., Huang, L., Forrey, R.C., Cheng, H., (2014) RSC Adv., 4, pp. 39912-39919 | |
dc.relation.references | Rao, X., Lou, Y., Zhou, Y., Zhang, J., Zhong, S., (2021) Appl. Surf. Sci., 566 | |
dc.relation.references | Siegel, D., Hector, L.G., Adams, J.B., (2002) Suf. Sci., 498, pp. 321-336 | |
dc.relation.references | Kresse, G., Furthmüller, J., (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186 | |
dc.relation.references | Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, pp. 3865-3868 | |
dc.relation.references | Grimme, S., Antony, J., Ehrlich, S., Krieg, H., (2010) J. Chem. Phys., 132 | |
dc.relation.references | Jimenez-Orozco, C., Figueras, M., Flórez, E., Viñes, F., Rodriguez, J.A., Illas, F., (2022) Phys. Chem. Chem. Phys., 24, pp. 16556-16565 | |
dc.relation.references | Koverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., (2019) J. Phys. Chem. C., 123, pp. 8871-8883 | |
dc.relation.references | Blöchl, P.E., (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979 | |
dc.relation.references | Kresse, G., Joubert, D., (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 1758-1775 | |
dc.relation.references | Monkhorst, H.J., Pack, J.D., (1976) Phys. Rev. B., 13, pp. 5188-5192 | |
dc.relation.references | Koverga, A.A., Flórez, E., Rodriguez, J.A., (2021) Int. J. Hydrogen Energy, 46, pp. 25092-25102 | |
dc.relation.references | Jimenez-Orozco, C., Koverga, A.A., Flórez, E., Rodríguez, J.A., (2023) Surf. Sci., 728 | |
dc.relation.references | Bader, R., (1990) Atoms in Molecules: A Quantum Theory, , Oxford University Press, New York | |
dc.relation.references | Marinelli, F., Jelea, A., Allouche, A., (2007) Surf. Sci., 601, pp. 578-587 | |
dc.relation.references | Gaston, N., Hendy, S., (2009) Catal. Today., 146, pp. 223-229 | |
dc.relation.references | Vasić, D.D., Pašti, I.A., Mentus, S.V., (2013) Int. J. Hydrogen Energy, 38, pp. 5009-5018 | |
dc.relation.references | Ma, C., Liu, T., Chen, L., (2010) Appl. Surf. Sci., 256, pp. 7400-7405 | |
dc.relation.references | Zhang, Y., Zhang, X., Yang, Z., (2019) Int. J. Hydrogen Energy, 44, pp. 3115-3120 | |
dc.relation.references | Zhang, Y., Yang, Z., (2019) J. Alloys Compd., 775, pp. 330-334 | |
dc.relation.references | Prats, H., Piñero, J.J., Viñes, F., Bromley, S.T., Sayós, R., Illas, F., (2019) Chem. Commun., 55, pp. 12797-12800 | |
dc.relation.references | Piñero, J.J., Ramírez, P.J., Bromley, S.T., Illas, F., Viñes, F., Rodriguez, J.A., (2018) J. Phys. Chem. C., 122, pp. 28013-28020 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |