Mostrar el registro sencillo del ítem

dc.contributor.authorXu Y
dc.contributor.authorOlmos L.E
dc.contributor.authorMateo D
dc.contributor.authorHernando A
dc.contributor.authorYang X
dc.contributor.authorGonzález M.C.
dc.date.accessioned2023-10-24T19:24:36Z
dc.date.available2023-10-24T19:24:36Z
dc.date.created2023
dc.identifier.issn26628457
dc.identifier.urihttp://hdl.handle.net/11407/7980
dc.description.abstractThe urban spatial structure represents the distribution of public and private spaces in cities and how people move within them. Although it usually evolves slowly, it can change quickly during large-scale emergency events, as well as due to urban renewal in rapidly developing countries. Here we present an approach to delineate such urban dynamics in quasi-real time through a human mobility metric, the mobility centrality index ΔKS. As a case study, we tracked the urban dynamics of eleven Spanish cities during the COVID-19 pandemic. The results revealed that their structures became more monocentric during the lockdown in the first wave, but kept their regular spatial structures during the second wave. To provide a more comprehensive understanding of mobility from home, we also introduce a dimensionless metric, KSHBT, which measures the extent of home-based travel and provides statistical insights into the transmission of COVID-19. By utilizing individual mobility data, our metrics enable the detection of changes in the urban spatial structure. © 2023, The Author(s), under exclusive licence to Springer Nature America, Inc.eng
dc.language.isoeng
dc.publisherSpringer Nature
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85164345970&doi=10.1038%2fs43588-023-00484-5&partnerID=40&md5=2ae2b8db559a45430267538d0c154a2f
dc.sourceNat. Comput. Sci.
dc.sourceNature Computational Scienceeng
dc.titleUrban dynamics through the lens of human mobilityeng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1038/s43588-023-00484-5
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationXu, Y., MoE Key Laboratory of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, China, Department of City and Regional Planning, University of California, Berkeley, CA, United States, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
dc.affiliationOlmos, L.E., Department of City and Regional Planning, University of California, Berkeley, CA, United States, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationMateo, D., Kido Dynamics SA, Lausanne, Switzerland
dc.affiliationHernando, A., Kido Dynamics SA, Lausanne, Switzerland
dc.affiliationYang, X., MoE Key Laboratory of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, China
dc.affiliationGonzález, M.C., Department of City and Regional Planning, University of California, Berkeley, CA, United States, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States, Department of Civil and Environmental Engineering, University of California, Berkeley, CA, United States
dc.relation.referencesBettencourt, L.M., The origins of scaling in cities (2013) Science, 340, pp. 1438-1441
dc.relation.referencesBatty, M., A theory of city size (2013) Science, 340, pp. 1418-1419
dc.relation.referencesBatty, M., The size, scale and shape of cities (2008) Science, 319, pp. 769-771
dc.relation.referencesKeuschnigg, M., Mutgan, S., Hedström, P., Urban scaling and the regional divide (2019) Sci. Adv., 5, p. eaav0042
dc.relation.referencesXu, Y., Olmos, L.E., Abbar, S., González, M.C., Deconstructing laws of accessibility and facility distribution in cities (2020) Sci. Adv., 6, p. eabb4112
dc.relation.referencesBertaud, A., (2004) The Spatial Organization of Cities: Deliberate Outcome or Unforeseen Consequence? IURD Working Paper 2004-01, , (Univ. California
dc.relation.referencesBettencourt, L.M., Lobo, J., Helbing, D., Kühnert, C., West, G.B., Growth, innovation, scaling and the pace of life in cities (2007) Proc. Natl Acad. Sci. USA, 104, pp. 7301-7306
dc.relation.referencesEwing, R., Rong, F., The impact of urban form on U.S. residential energy use (2008) Housing Policy Debate, 19, pp. 1-30
dc.relation.referencesLamsal, L., Martin, R., Parrish, D., Krotkov, N., Scaling relationship for NO2 pollution and urban population size: a satellite perspective (2013) Environ. Sci. Technol., 47, pp. 7855-7861
dc.relation.referencesLi, D., Urban heat island: aerodynamics or imperviousness? (2019) Sci. Adv., 5, p. eaau4299
dc.relation.referencesAnderson, W.P., Kanaroglou, P.S., Miller, E.J., Urban form, energy and the environment: a review of issues, evidence and policy (1996) Urban Studies, 33, pp. 7-35
dc.relation.referencesTsekeris, T., Geroliminis, N., City size, network structure and traffic congestion (2013) J. Urban Econ., 76, pp. 1-14
dc.relation.referencesKaza, N., Urban form and transportation energy consumption (2020) Energy Policy, 136, p. 111049
dc.relation.referencesClark, C., Urban population densities (1951) J. R. Stat. Soc. A, 114, pp. 490-496
dc.relation.referencesBertaud, A., Malpezzi, S., (2003) The Spatial Distribution of Population in 48 World Cities: Implications for Economies in Transition, pp. 54-55. , The Center for Urban Land Economics Research, Univ. Wisconsin
dc.relation.referencesPereira, R.H.M., Nadalin, V., Monasterio, L., Albuquerque, P.H., Urban centrality: a simple index (2013) Geogr. Anal., 45, pp. 77-89
dc.relation.referencesSohn, J., Are commuting patterns a good indicator of urban spatial structure? (2005) J. Transport Geogr., 13, pp. 306-317
dc.relation.referencesAcosta, R.J., Kishore, N., Irizarry, R.A., Buckee, C.O., Quantifying the dynamics of migration after Hurricane Maria in Puerto Rico (2020) Proc. Natl Acad. Sci. USA, 117, pp. 32772-32778
dc.relation.referencesCalabrese, F., Ferrari, L., Blondel, V.D., Urban sensing using mobile phone network data: a survey of research (2014) ACM Comput. Surveys, 47, pp. 1-20
dc.relation.referencesOlmos, L.E., Çolak, S., Shafiei, S., Saberi, M., González, M.C., Macroscopic dynamics and the collapse of urban traffic (2018) Proc. Natl Acad. Sci. USA, 115, pp. 12654-12661
dc.relation.referencesXu, Y., Çolak, S., Kara, E.C., Moura, S.J., González, M.C., Planning for electric vehicle needs by coupling charging profiles with urban mobility (2018) Nat. Energy, 3, pp. 484-493
dc.relation.referencesGrantz, K.H., The use of mobile phone data to inform analysis of COVID-19 pandemic epidemiology (2020) Nat. Commun., 11, p. 4961
dc.relation.referencesOliver, N., Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle (2020) Sci. Adv., 6, p. eabc0764
dc.relation.referencesChang, S., Mobility network models of COVID-19 explain inequities and inform reopening (2020) Nature, 589, pp. 82-87
dc.relation.referencesAlessandretti, L., What human mobility data tell us about COVID-19 spread (2022) Nat. Rev. Phys., 4, pp. 12-13
dc.relation.referencesBor, J., Cohen, G.H., Galea, S., Population health in an era of rising income inequality: USA, 1980–2015 (2017) Lancet, 389, pp. 1475-1490
dc.relation.referencesFlorez, M.A., Measuring the impact of economic well being in commuting networks—a case study of Bogota, Colombia (2017) Proc. Transportation Research Board 96Th Annual Meeting Paper No. 17-03745, , (Transportation Research Board
dc.relation.referencesWang, Q., Phillips, N.E., Small, M.L., Sampson, R.J., Urban mobility and neighborhood isolation in America’s 50 largest cities (2018) Proc. Natl Acad. Sci. USA, 115, pp. 7735-7740
dc.relation.referencesGonzález, M.C., Hidalgo, C.A., Barabasi, A.-L., Understanding individual human mobility patterns (2008) Nature, 453, pp. 779-782
dc.relation.referencesBonaccorsi, G., Economic and social consequences of human mobility restrictions under COVID-19 (2020) Proc. Natl Acad. Sci. USA, 117, pp. 15530-15535
dc.relation.referencesVerschuur, J., Koks, E.E., Hall, J.W., Observed impacts of the COVID-19 pandemic on global trade (2021) Nat. Hum. Behav., 5, pp. 305-307
dc.relation.referencesBrough, R., Freedman, M., Phillips, D.C., Understanding socioeconomic disparities in travel behavior during the COVID-19 pandemic (2021) J. Reg. Sci., 61, pp. 753-774
dc.relation.referencesChinazzi, M., The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak (2020) Science, 368, pp. 395-400
dc.relation.referencesMeijers, E.J., Burger, M.J., Spatial structure and productivity in U.S. metropolitan areas (2010) Environ. Planning A Econ. Space, 42, pp. 1383-1402
dc.relation.referencesLandscan Global Population Database (ORNL, 2017), , http://web.ornl.gov/sci/landscan/
dc.relation.referencesMartins, H., Urban compaction or dispersion? An air quality modelling study (2012) Atmos. Environ., 54, pp. 60-72
dc.relation.referencesRubiera Morollón, F., González Marroquin, V.M., Pérez Rivero, J.L., Urban sprawl in Spain: differences among cities and causes (2016) Eur. Planning Studies, 24, pp. 207-226
dc.relation.referencesZoğal, V., Domènech, A., Emekli, G., Stay at (which) home: second homes during and after the COVID-19 pandemic (2020) J. Tourism Futures, 8, pp. 125-133
dc.relation.referencesCori, A., Ferguson, N.M., Fraser, C., Cauchemez, S., A new framework and software to estimate time-varying reproduction numbers during epidemics (2013) Am. J. Epidemiol., 178, pp. 1505-1512
dc.relation.referencesKe, G., LightGBM: A highly efficient gradient boosting decision tree (2017) Advances in Neural Information Processing Systems, 30. , Guyon, I. et al
dc.relation.referencesLundberg, S.M., From local explanations to global understanding with explainable AI for trees (2020) Nat. Mach. Intell., 2, pp. 56-67
dc.relation.references(2022) AUDES Project, , http://alarcos.esi.uclm.es/per/fruiz/audes/, ESI
dc.relation.references(2016) Census Data, , https://www.census.gov/data.html, United States Census Bureau
dc.relation.referencesJiang, S., The TimeGeo modeling framework for urban mobility without travel surveys (2016) Proc. Natl Acad. Sci. USA, 113, pp. E5370-E5378
dc.relation.referencesDe Nadai, M., Xu, Y., Letouzé, E., González, M.C., Lepri, B., Socio-economic, built environment and mobility conditions associated with crime: a study of multiple cities (2020) Sci. Rep., 10
dc.relation.referencesAbbott, S., Estimating the time-varying reproduction number of SARS-CoV-2 using national and subnational case counts (2020) Wellcome Open Res., 5, p. 112
dc.relation.referencesNouvellet, P., Reduction in mobility and COVID-19 transmission (2021) Nat. Commun., 12, p. 1090
dc.relation.referencesImai, N., (2020) Report 3: Transmissibility of 2019-nCoV, p. 625. , (Imperial College London
dc.relation.referencesRyu, S., Kim, D., Lim, J.-S., Ali, S.T., Cowling, B.J., Serial interval and transmission dynamics during SARS-CoV-2 delta variant predominance, South Korea (2022) Emerg. Infect. Dis., 28, pp. 407-410
dc.relation.referencesXu, Y., Sample Data for the Paper Titled Urban Dynamics through the Lens of Human Mobility, , https://doi.org/10.5281/zenodo.8001784, Zenodo, 2023
dc.relation.referencesXu, Y., Source Code for the Paper Titled Urban Dynamics through the Lens of Human Mobility, , https://doi.org/10.5281/zenodo.8001855, Zenodo, 2023
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem