Mostrar el registro sencillo del ítem

dc.contributor.authorPérez S
dc.contributor.authorUlloa M
dc.contributor.authorFlórez E
dc.contributor.authorAcelas N
dc.contributor.authorOcampo-Pérez R
dc.contributor.authorPadilla-Ortega E
dc.contributor.authorForgionny A.
dc.date.accessioned2023-10-24T19:24:36Z
dc.date.available2023-10-24T19:24:36Z
dc.date.created2023
dc.identifier.issn22151532
dc.identifier.urihttp://hdl.handle.net/11407/7981
dc.description.abstractThis research focused on the development of an adsorbent material from the Tahiti lemon peels (LP) using thermochemical treatment with ZnCl2 at 550 °C, and its application for simultaneous removal of copper ion (Cu2+), and Congo red (CR) from contaminated water resources. Results showed a mesoporous activated carbon with a high area (SBET = 945 m2g−1) and a wide pore distribution (2.0–25 nm), with carboxylate, phenolic and ether as the main functional surface groups. The adsorption experiments showed that LP activated with ZnCl2 (LPZn) exhibited a higher effectiveness than LP without any treatment and LP calcined at 550 °C (CLP). The pH at the point of zero charge (pHPZC) of LP, CLP, and LPZn was 2.78, 8.04, and 4.72, respectively, indicating a wide diversity and proportion of functional groups in the materials. The maximum adsorption capacities of LPZn were 1.78 meq g−1 (618.35 mg g−1) for CR and 0.91 meq g−1 (28.85 mg g−1) for Cu2+, which are comparable with other adsorbents previously reported. In multicomponent systems, at the highest concentration of Cu2+ (90.0 mg L-1 ≈2.9 meq L-1), a favoring of the adsorbed amount of Cu2+ was observed, suggesting the occurrence of a synergistic effect for the presence of Cu2+ under these conditions. Therefore, the material derived from Tahiti lemon peels can be considered a promising adsorbent with good physicochemical properties for the treatment of contaminated wastewater by dyes and heavy metal ions. © 2023 Elsevier B.V.eng
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85148718955&doi=10.1016%2fj.enmm.2023.100795&partnerID=40&md5=65031bfda5698e579de200b84b6b270a
dc.sourceEnviron. Nanotechnol. Monit. Manag.
dc.sourceEnvironmental Nanotechnology, Monitoring and Managementeng
dc.subjectAdsorptioneng
dc.subjectAgricultural wasteeng
dc.subjectCongo redeng
dc.subjectCoppereng
dc.subjectLemon peeleng
dc.subjectMono-component adsorptioneng
dc.subjectMulticomponent adsorptioneng
dc.titleValorization of lemon peels wastes into a potential adsorbent for simultaneous removal of copper ion (Cu2+) and Congo red from wastewatereng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1016/j.enmm.2023.100795
dc.relation.citationvolume20
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationPérez, S., Grupo de Investigación Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationUlloa, M., Grupo de Investigación Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationFlórez, E., Grupo de Investigación Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationAcelas, N., Grupo de Investigación Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationOcampo-Pérez, R., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
dc.affiliationPadilla-Ortega, E., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
dc.affiliationForgionny, A., Grupo de Investigación Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.relation.referencesAbdel-Shafy, H.I., Mansour, M.S.M., Solid waste issue: Sources, composition, disposal, recycling, and valorization (2018) Egypt. J. Pet., 27, pp. 1275-1290
dc.relation.referencesAbou Alsoaud, M.M., Taher, M.A., Hamed, A.M., Elnouby, M.S., Omer, A.M., Reusable kaolin impregnated aminated chitosan composite beads for efficient removal of Congo red dye: isotherms, kinetics and thermodynamics studies (2022) Sci. Rep., 12, pp. 1-19
dc.relation.referencesAchour, Y., Bahsis, L., Ablouh, E.H., Yazid, H., Laamari, M.R., Haddad, M.E., Insight into adsorption mechanism of Congo red dye onto Bombax Buonopozense bark Activated-carbon using Central composite design and DFT studies (2021) Surfaces and Interfaces, 23
dc.relation.referencesAhmad, R., Kumar, R., Adsorptive removal of congo red dye from aqueous solution using bael shell carbon (2010) Appl. Surf. Sci., 257, pp. 1628-1633
dc.relation.referencesAkaike, H., A New Look at the Statistical Model Identification (1974) IEEE Trans. Automat. Contr., 19, pp. 716-723
dc.relation.referencesAl-Ghouti, M.A., Da'ana, D.A., Guidelines for the use and interpretation of adsorption isotherm models: A review (2020) J. Hazard. Mater., 393
dc.relation.referencesAman, T., Kazi, A.A., Sabri, M.U., Bano, Q., Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent (2008) Colloids Surfaces B Biointerfaces, 63, pp. 116-121
dc.relation.referencesAn, L., Si, C., Bae, J.H., Jeong, H., Kim, Y.S., One-step silanization and amination of lignin and its adsorption of Congo red and Cu(II) ions in aqueous solution (2020) Int. J. Biol. Macromol., 159, pp. 222-230
dc.relation.referencesAzam, K., Shezad, N., Shafiq, I., Akhter, P., Akhtar, F., Jamil, F., Shafique, S., Hussain, M., A review on activated carbon modifications for the treatment of wastewater containing anionic dyes (2022) Chemosphere, 306, p. 135566
dc.relation.referencesBarrett, E.P., Joyner, L.G., Halenda, P.P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms (1951) J. Am. Chem. Soc., 73, pp. 373-380
dc.relation.referencesBashir, M., Tyagi, S., Annachhatre, A.P., Adsorption of copper from aqueous solution onto agricultural Adsorbents: Kinetics and isotherm studies (2020) Mater. Today Proc., 28, pp. 1833-1840
dc.relation.referencesBedia, J., Peñas-Garzón, M., Gómez-Avilés, A., Rodriguez, J., Belver, C., A Review on the Synthesis and Characterization of Biomass-Derived Carbons for Adsorption of Emerging Contaminants from Water (2018), 4, p. 63
dc.relation.referencesBergmann, C.P., Machado, F.M., (2015), https://doi.org/https://doi.org/10.1007/978-3-319-18875-1, Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications
dc.relation.referencesBhatnagar, A., Kumar, E., Minocha, A.K., Jeon, B.H., Song, H., Seo, Y.C., Removal of anionic dyes from water using citrus limonum (lemon) peel: Equilibrium studies and kinetic modeling (2009) Sep. Sci. Technol., 44, pp. 316-334
dc.relation.referencesBhatnagar, A., Sillanpää, M., Witek-krowiak, A., Agricultural waste peels as versatile biomass for water purification: A review (2015) Chem. Eng. J., 270, pp. 244-271
dc.relation.referencesBiesinger, M.C., Lau, L.W.M., Gerson, A.R., Smart, R.S.C., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn (2010) Appl. Surf. Sci., 257, pp. 887-898
dc.relation.referencesBilal, M., Shah, J.A., Ashfaq, T., Gardazi, S.M.H., Tahir, A.A., Pervez, A., Haroon, H., Mahmood, Q., Waste biomass adsorbents for copper removal from industrial wastewater-A review (2013) J. Hazard. Mater., 263, pp. 322-333
dc.relation.referencesBlue, M., Behavior, A., Porous ZnCl 2 -Activated Carbon from Shaddock Peel (2022), Methylene Blue Adsorption Behavior
dc.relation.referencesBrunauer, S., Emmett, P.H., Teller, E., Adsorption of Gases in Multimolecular Layers (1938) J. Am. Chem. Soc., 60, pp. 309-319
dc.relation.referencesChakraborty, R., Asthana, A., Singh, A.K., Jain, B., Susan, A.B.H., Adsorption of heavy metal ions by various low-cost adsorbents: a review (2022) Int. J. Environ. Anal. Chem., 102, pp. 342-379
dc.relation.referencesCheng, S., Oatley, D.L., Williams, P.M., Wright, C.J., Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters (2012) Water Res., 46, pp. 33-42
dc.relation.referencesChoudhary, T.K., Khan, K.S., Hussain, Q., Ahmad, M., Ashfaq, M., Feedstock-induced changes in composition and stability of biochar derived from different agricultural wastes (2019) Arab. J. Geosci., 12
dc.relation.referencesDarweesh, M.A., Elgendy, M.Y., Ayad, M.I., Ahmed, A.M.M., Elsayed, N.M.K., Hammad, W.A., Adsorption isotherm, kinetic, and optimization studies for copper (II) removal from aqueous solutions by banana leaves and derived activated carbon (2022) South African J. Chem. Eng., 40, pp. 10-20
dc.relation.referencesDavarazar, M., Kamali, M., Lopes, I., Engineered nanomaterials for (waste)water treatment - A scientometric assessment and sustainability aspects (2021) NanoImpact, 22
dc.relation.referencesDias, Y.N., Souza, E.S., da Costa, H.S.C., Melo, L.C.A., Penido, E.S., do Amarante, C.B., Teixeira, O.M.M., Fernandes, A.R., Biochar produced from Amazonian agro-industrial wastes: properties and adsorbent potential of Cd2+ and Cu2+ (2019) Biochar, 1 (4), pp. 389-400
dc.relation.referencesEl-Kammah, M., Elkhatib, E., Aboukila, E., Ecofriendly nanoparticles derived from water industry byproducts for effective removal of Cu (II) from wastewater: Adsorption isotherms and kinetics (2022) Inorg. Chem. Commun., 146
dc.relation.referencesForgionny, A., Acelas, N.Y., Ocampo-Pérez, R., Padilla-Ortega, E., Pérez, S., Flórez, E., Mechanism adsorption analysis during the removal of Cd2+ and Cu2+ onto cedar sawdust via experiment coupled with theoretical calculation: Mono- and multicomponent systems (2022) Environ. Nanotechnology, Monit. Manag., 18, p. 100715
dc.relation.referencesFreundlich, H., Über die adsorption in lösungen (1907) Zeitschrift für Phys. Chemie, 57, pp. 385-470
dc.relation.referencesHeidarinejad, Z., Dehghani, M.H., Heidari, M., Javedan, G., Ali, I., Sillanpää, M., Methods for preparation and activation of activated carbon: a review (2020) Environ. Chem. Lett., 18, pp. 393-415
dc.relation.referencesHernández-Montoya, V., Pérez-Cruz, M.A., Mendoza-Castillo, D.I., Moreno-Virgen, M.R., Bonilla-Petriciolet, A., Competitive adsorption of dyes and heavy metals on zeolitic structures (2013) J. Environ. Manage., 116, pp. 213-221
dc.relation.referencesHo, Y.S., McKay, G., Pseudo-second order model for sorption processes (1999) Process Biochem., 34, pp. 451-465
dc.relation.referencesHopkins, D.T., MacQuarrie, S., Hawboldt, K.A., Removal of copper from sulfate solutions using biochar derived from crab processing by-product (2022) J. Environ. Manage., 303, p. 114270
dc.relation.referencesIvanets, A.I., Kitikova, N.V., Shashkova, I.L., Roshchina, M.Y., Srivastava, V., Sillanpää, M., Adsorption performance of hydroxyapatite with different crystalline and porous structure towards metal ions in multicomponent solution (2019) J. Water Process Eng., 32
dc.relation.referencesJagiello, J., Stable Numerical Solution of the Adsorption Integral Equation Using Splines (1994) Langmuir, 10, pp. 2778-2785
dc.relation.referencesKatiyar, R., Patel, A.K., Nguyen, T.B., Singhania, R.R., Chen, C.W., Dong, C.D., Adsorption of copper (II) in aqueous solution using biochars derived from Ascophyllum nodosum seaweed (2021) Bioresour. Technol., 328
dc.relation.referencesKörbahti, B.K., Artut, K., Geçgel, C., Özer, A., Electrochemical decolorization of textile dyes and removal of metal ions from textile dye and metal ion binary mixtures (2011) Chem. Eng. J., 173, pp. 677-688
dc.relation.referencesKula, I., Uǧurlu, M., Karaoǧlu, H., Çelik, A., Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation (2008) Bioresour. Technol., 99, pp. 492-501
dc.relation.referencesKumar, K.V., Porkodi, K., Relation between some two- and three-parameter isotherm models for the sorption of methylene blue onto lemon peel (2006) J. Hazard. Mater., 138, pp. 633-635
dc.relation.referencesKumar Prajapati, A., Kumar Mondal, M., Green synthesis of Fe3O4-onion peel biochar nanocomposites for adsorption of Cr(VI), methylene blue and congo red dye from aqueous solutions (2021) J. Mol. Liq., 118161
dc.relation.referencesLangmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum (1918) J. Am. Chem. Soc., 40 (9), pp. 1361-1403
dc.relation.referencesLee, L.Z., Ahmad Zaini, M.A., One-step ZnCl2/FeCl3 composites preparation of magnetic activated carbon for effective adsorption of rhodamine B dye (2022) Toxin Rev., 41, pp. 64-81
dc.relation.referencesLi, J., Fan, Q., Wu, Y., Wang, X., Chen, C., Tang, Z., Wang, X., Magnetic polydopamine decorated with Mg-Al LDH nanoflakes as a novel bio-based adsorbent for simultaneous removal of potentially toxic metals and anionic dyes (2016) J. Mater. Chem. A, 4, pp. 1737-1746
dc.relation.referencesLi, K., Li, X., Li, B., Investigation the adsorption behavior of functional carbon-based composites for efficient removing anions / cations in single and multicomponent systems (2022) Sep. Purif. Technol., 289
dc.relation.referencesLimousin, G., Gaudet, J.-P., Charlet, L., Szenknect, S., Barthès, V., Krimissa, M., Sorption isotherms: A review on physical bases, modeling and measurement (2007) Appl. Geochemistry, 22, pp. 249-275
dc.relation.referencesLing, C., Liu, F.Q., Long, C., Chen, T.P., Wu, Q.Y., Li, A.M., Synergic removal and sequential recovery of acid black 1 and copper (II) with hyper-crosslinked resin and inside mechanisms (2014) Chem. Eng. J., 236, pp. 323-331
dc.relation.referencesLokhande, R.S., Singare, P.U., Pimple, D.S., Toxicity Study of Heavy Metals Pollutants in Waste Water Effluent Samples Collected from Taloja Industrial Estate of Mumbai (2011) India. Resour. Environ., 1, pp. 13-19
dc.relation.referencesMa, M., Ying, H., Cao, F., Wang, Q., Ai, N., Adsorption of congo red on mesoporous activated carbon prepared by CO2 physical activation (2020) Chinese J. Chem. Eng., 28, pp. 1069-1076
dc.relation.referencesMahato, N., Agarwal, P., Mohapatra, D., Sinha, M., Dhyani, A., Pathak, B., Tripathi, M.K., Angaiah, S., Biotransformation of citrus waste-ii: Bio-sorbent materials for removal of dyes, heavy metals and toxic chemicals from polluted water (2021) Processes, 9 (9), p. 1544
dc.relation.referencesMaiti, P., Siddiqi, H., Kumari, U., Chatterjee, A., Meikap, B.C., Adsorptive remediation of azo dye contaminated wastewater by ZnCl2 modified bio-adsorbent: Batch study and life cycle assessment (2023) Powder Technol., 415
dc.relation.referencesMandal, S., Calderon, J., Marpu, S.B., Omary, M.A., Shi, S.Q., Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, and isotherm studies (2021) J. Contam. Hydrol., 243
dc.relation.referencesMariana, M., Abdul, A.K., Mistar, E.M., Yahya, E.B., Alfatah, T., Danish, M., Amayreh, M., Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption (2021) J. Water Process Eng., 43
dc.relation.referencesMeseldzija, S., Petrovic, J., Onjia, A., Volkov-Husovic, T., Nesic, A., Vukelic, N., Utilization of agro-industrial waste for removal of copper ions from aqueous solutions and mining-wastewater (2019) J. Ind. Eng. Chem., 75, pp. 246-252
dc.relation.referencesMohammad-Rezaei, R., Khalilzadeh, B., Rahimi, F., Moradi, S., Shahlaei, M., Derakhshankhah, H., Jaymand, M., Simultaneous removal of cationic and anionic dyes from simulated industrial effluents using a nature-inspired adsorbent (2022) Environ. Res., 214, p. 113966
dc.relation.referencesNg, H.S., Kee, P.E., Yim, H.S., Chen, P.-T., Wei, Y.-H., Chi-Wei Lan, J., Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts (2020) Bioresour. Technol., 302, p. 122889
dc.relation.referencesOthmani, A., Magdouli, S., Senthil Kumar, P., Kapoor, A., Chellam, P.V., Gökkuş, Ö., Agricultural waste materials for adsorptive removal of phenols, chromium (VI) and cadmium (II) from wastewater: A review (2022) Environ. Res., 204
dc.relation.referencesPaes, L.A.B., Bezerra, B.S., Deus, R.M., Jugend, D., Battistelle, R.A.G., Organic solid waste management in a circular economy perspective – A systematic review and SWOT analysis (2019) J. Clean. Prod., 239
dc.relation.referencesParvin, S., Biswas, B.K., Rahman, M.A., Rahman, M.H., Anik, M.S., Uddin, M.R., Study on adsorption of Congo red onto chemically modified egg shell membrane (2019) Chemosphere, 236, p. 124326
dc.relation.referencesPérez, S., Moreno, A., Du, Z.-Y., López, D., Upgrading of benzofuran to hydrocarbons by hydrodeoxygenation over nickel–molybdenum carbide catalysts supported inside multi-wall carbon nanotubes (2022) Fuel Process. Technol., 236, p. 107416
dc.relation.referencesPowell, K.J., Brown, P.L., Byrne, R.H., Gajda, T., Hefter, G., Sjöberg, S., Wanner, H., Chemical speciation of environmentally significant metals with inorganic ligands. PART 2: The Cu2+-OH-, Cl-, CO 32-, SO42-, and PO43- systems (IUPAC Technical Report) (2007) Pure Appl. Chem., 79, pp. 895-950
dc.relation.referencesPrajapati, A.K., Mondal, M.K., Novel green strategy for CuO–ZnO–C nanocomposites fabrication using marigold (Tagetes spp.) flower petals extract with and without CTAB treatment for adsorption of Cr(VI) and Congo red dye (2021) J. Environ. Manage., 290
dc.relation.referencesSabela, M.I., Kunene, K., Kanchi, S., Xhakaza, N.M., Bathinapatla, A., Mdluli, P., Sharma, D., Bisetty, K., Removal of copper (II) from wastewater using green vegetable waste derived activated carbon: An approach to equilibrium and kinetic study (2019) Arab. J. Chem., 12, pp. 4331-4339
dc.relation.referencesSchuler, N., Casalis, A., Debomy, S., Johnnides, C., Kuper, K., Cointreau, S., Baker, J.L., Lipman, B., (2012), Robin Rajack, with, Ebbe, K., Baeumler, A. What a Waste : A Global Review of Solid Waste Management
dc.relation.referencesSellaoui, L., Mendoza-Castillo, D.I., Reynel-Ávila, H.E., Ávila-Camacho, B.A., Díaz-Muñoz, L.L., Ghalla, H., Bonilla-Petriciolet, A., Lamine, A.B., Understanding the adsorption of Pb2+, Hg2+ and Zn2+ from aqueous solution on a lignocellulosic biomass char using advanced statistical physics models and density functional theory simulations (2019) Chem. Eng. J., 365, pp. 305-316
dc.relation.referencesSharma, A., Siddiqui, Z.M., Dhar, S., Mehta, P., Pathania, D., Adsorptive removal of congo red dye (CR) from aqueous solution by Cornulaca monacantha stem and biomass-based activated carbon: isotherm, kinetics and thermodynamics (2019) Sep. Sci. Technol., 54, pp. 916-929
dc.relation.referencesSheindorf, C., Rebhun, M., Sheintuch, M., A Freundlich-type multicomponent isotherm (1981) J. Colloid Interface Sci., 79, pp. 136-142
dc.relation.referencesSing, K.S.W., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) (1985) Pure Appl. Chem., 57, pp. 603-619
dc.relation.referencesSingh, I., Mishra, P.K., Nano-membrane Filtration a Novel Application of Nanotechnology for Waste Water Treatment (2020) Mater. Today Proc., 29, pp. 327-332
dc.relation.referencesSips, R., On the structure of a catalyst surface (1948) J. Chem. Phys., 16 (5), pp. 490-495
dc.relation.referencesTaylor, A.A., Tsuji, J.S., Garry, M.R., McArdle, M.E., Goodfellow, W.L., Adams, W.J., Menzie, C.A., Critical Review of Exposure and Effects: Implications for Setting Regulatory Health Criteria for Ingested Copper (2020) Environ. Manage., 65 (1), pp. 131-159
dc.relation.referencesTreybal, R.E., Mass-Transfer Operations, Third (1981), Edit. ed. Mc Graw Hill International Book Company Singapore
dc.relation.referencesVijayaraghavan, K., Balasubramanian, R., Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions (2015) J. Environ. Manage., 160, pp. 283-296
dc.relation.referencesVillen-Guzman, M., Cerrillo-Gonzalez, M.M., Paz-Garcia, J.M., Rodriguez-Maroto, J.M., Arhoun, B., Valorization of lemon peel waste as biosorbent for the simultaneous removal of nickel and cadmium from industrial effluents (2021) Environ. Technol. Innov., 21
dc.relation.referencesWu, F.C., Tseng, R.L., Juang, R.S., Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics (2009) Chem. Eng. J., 153, pp. 1-8
dc.relation.referencesYadav, K., Jagadevan, S., Influence of torrefaction and pyrolysis on engineered biochar and its applicability in defluoridation: Insight into adsorption mechanism, batch adsorber design and artificial neural network modelling (2021) J. Anal. Appl. Pyrolysis, 154
dc.relation.referencesYin, G., Song, X., Tao, L., Sarkar, B., Sarmah, A.K., Zhang, W., Lin, Q., Wang, H., Novel Fe-Mn binary oxide-biochar as an adsorbent for removing Cd(II) from aqueous solutions (2020) Chem. Eng. J., 389, p. 124465
dc.relation.referencesZheng, Y., Cheng, B., Fan, J., Yu, J., Ho, W., Review on nickel-based adsorption materials for Congo red (2021) J. Hazard. Mater., 403
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem