Mostrar el registro sencillo del ítem
Valorization of lemon peels wastes into a potential adsorbent for simultaneous removal of copper ion (Cu2+) and Congo red from wastewater
dc.contributor.author | Pérez S | |
dc.contributor.author | Ulloa M | |
dc.contributor.author | Flórez E | |
dc.contributor.author | Acelas N | |
dc.contributor.author | Ocampo-Pérez R | |
dc.contributor.author | Padilla-Ortega E | |
dc.contributor.author | Forgionny A. | |
dc.date.accessioned | 2023-10-24T19:24:36Z | |
dc.date.available | 2023-10-24T19:24:36Z | |
dc.date.created | 2023 | |
dc.identifier.issn | 22151532 | |
dc.identifier.uri | http://hdl.handle.net/11407/7981 | |
dc.description.abstract | This research focused on the development of an adsorbent material from the Tahiti lemon peels (LP) using thermochemical treatment with ZnCl2 at 550 °C, and its application for simultaneous removal of copper ion (Cu2+), and Congo red (CR) from contaminated water resources. Results showed a mesoporous activated carbon with a high area (SBET = 945 m2g−1) and a wide pore distribution (2.0–25 nm), with carboxylate, phenolic and ether as the main functional surface groups. The adsorption experiments showed that LP activated with ZnCl2 (LPZn) exhibited a higher effectiveness than LP without any treatment and LP calcined at 550 °C (CLP). The pH at the point of zero charge (pHPZC) of LP, CLP, and LPZn was 2.78, 8.04, and 4.72, respectively, indicating a wide diversity and proportion of functional groups in the materials. The maximum adsorption capacities of LPZn were 1.78 meq g−1 (618.35 mg g−1) for CR and 0.91 meq g−1 (28.85 mg g−1) for Cu2+, which are comparable with other adsorbents previously reported. In multicomponent systems, at the highest concentration of Cu2+ (90.0 mg L-1 ≈2.9 meq L-1), a favoring of the adsorbed amount of Cu2+ was observed, suggesting the occurrence of a synergistic effect for the presence of Cu2+ under these conditions. Therefore, the material derived from Tahiti lemon peels can be considered a promising adsorbent with good physicochemical properties for the treatment of contaminated wastewater by dyes and heavy metal ions. © 2023 Elsevier B.V. | eng |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148718955&doi=10.1016%2fj.enmm.2023.100795&partnerID=40&md5=65031bfda5698e579de200b84b6b270a | |
dc.source | Environ. Nanotechnol. Monit. Manag. | |
dc.source | Environmental Nanotechnology, Monitoring and Management | eng |
dc.subject | Adsorption | eng |
dc.subject | Agricultural waste | eng |
dc.subject | Congo red | eng |
dc.subject | Copper | eng |
dc.subject | Lemon peel | eng |
dc.subject | Mono-component adsorption | eng |
dc.subject | Multicomponent adsorption | eng |
dc.title | Valorization of lemon peels wastes into a potential adsorbent for simultaneous removal of copper ion (Cu2+) and Congo red from wastewater | eng |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ciencias Básicas | spa |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.1016/j.enmm.2023.100795 | |
dc.relation.citationvolume | 20 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.affiliation | Pérez, S., Grupo de Investigación Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia | |
dc.affiliation | Ulloa, M., Grupo de Investigación Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia | |
dc.affiliation | Flórez, E., Grupo de Investigación Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia | |
dc.affiliation | Acelas, N., Grupo de Investigación Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia | |
dc.affiliation | Ocampo-Pérez, R., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico | |
dc.affiliation | Padilla-Ortega, E., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico | |
dc.affiliation | Forgionny, A., Grupo de Investigación Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia | |
dc.relation.references | Abdel-Shafy, H.I., Mansour, M.S.M., Solid waste issue: Sources, composition, disposal, recycling, and valorization (2018) Egypt. J. Pet., 27, pp. 1275-1290 | |
dc.relation.references | Abou Alsoaud, M.M., Taher, M.A., Hamed, A.M., Elnouby, M.S., Omer, A.M., Reusable kaolin impregnated aminated chitosan composite beads for efficient removal of Congo red dye: isotherms, kinetics and thermodynamics studies (2022) Sci. Rep., 12, pp. 1-19 | |
dc.relation.references | Achour, Y., Bahsis, L., Ablouh, E.H., Yazid, H., Laamari, M.R., Haddad, M.E., Insight into adsorption mechanism of Congo red dye onto Bombax Buonopozense bark Activated-carbon using Central composite design and DFT studies (2021) Surfaces and Interfaces, 23 | |
dc.relation.references | Ahmad, R., Kumar, R., Adsorptive removal of congo red dye from aqueous solution using bael shell carbon (2010) Appl. Surf. Sci., 257, pp. 1628-1633 | |
dc.relation.references | Akaike, H., A New Look at the Statistical Model Identification (1974) IEEE Trans. Automat. Contr., 19, pp. 716-723 | |
dc.relation.references | Al-Ghouti, M.A., Da'ana, D.A., Guidelines for the use and interpretation of adsorption isotherm models: A review (2020) J. Hazard. Mater., 393 | |
dc.relation.references | Aman, T., Kazi, A.A., Sabri, M.U., Bano, Q., Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent (2008) Colloids Surfaces B Biointerfaces, 63, pp. 116-121 | |
dc.relation.references | An, L., Si, C., Bae, J.H., Jeong, H., Kim, Y.S., One-step silanization and amination of lignin and its adsorption of Congo red and Cu(II) ions in aqueous solution (2020) Int. J. Biol. Macromol., 159, pp. 222-230 | |
dc.relation.references | Azam, K., Shezad, N., Shafiq, I., Akhter, P., Akhtar, F., Jamil, F., Shafique, S., Hussain, M., A review on activated carbon modifications for the treatment of wastewater containing anionic dyes (2022) Chemosphere, 306, p. 135566 | |
dc.relation.references | Barrett, E.P., Joyner, L.G., Halenda, P.P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms (1951) J. Am. Chem. Soc., 73, pp. 373-380 | |
dc.relation.references | Bashir, M., Tyagi, S., Annachhatre, A.P., Adsorption of copper from aqueous solution onto agricultural Adsorbents: Kinetics and isotherm studies (2020) Mater. Today Proc., 28, pp. 1833-1840 | |
dc.relation.references | Bedia, J., Peñas-Garzón, M., Gómez-Avilés, A., Rodriguez, J., Belver, C., A Review on the Synthesis and Characterization of Biomass-Derived Carbons for Adsorption of Emerging Contaminants from Water (2018), 4, p. 63 | |
dc.relation.references | Bergmann, C.P., Machado, F.M., (2015), https://doi.org/https://doi.org/10.1007/978-3-319-18875-1, Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications | |
dc.relation.references | Bhatnagar, A., Kumar, E., Minocha, A.K., Jeon, B.H., Song, H., Seo, Y.C., Removal of anionic dyes from water using citrus limonum (lemon) peel: Equilibrium studies and kinetic modeling (2009) Sep. Sci. Technol., 44, pp. 316-334 | |
dc.relation.references | Bhatnagar, A., Sillanpää, M., Witek-krowiak, A., Agricultural waste peels as versatile biomass for water purification: A review (2015) Chem. Eng. J., 270, pp. 244-271 | |
dc.relation.references | Biesinger, M.C., Lau, L.W.M., Gerson, A.R., Smart, R.S.C., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn (2010) Appl. Surf. Sci., 257, pp. 887-898 | |
dc.relation.references | Bilal, M., Shah, J.A., Ashfaq, T., Gardazi, S.M.H., Tahir, A.A., Pervez, A., Haroon, H., Mahmood, Q., Waste biomass adsorbents for copper removal from industrial wastewater-A review (2013) J. Hazard. Mater., 263, pp. 322-333 | |
dc.relation.references | Blue, M., Behavior, A., Porous ZnCl 2 -Activated Carbon from Shaddock Peel (2022), Methylene Blue Adsorption Behavior | |
dc.relation.references | Brunauer, S., Emmett, P.H., Teller, E., Adsorption of Gases in Multimolecular Layers (1938) J. Am. Chem. Soc., 60, pp. 309-319 | |
dc.relation.references | Chakraborty, R., Asthana, A., Singh, A.K., Jain, B., Susan, A.B.H., Adsorption of heavy metal ions by various low-cost adsorbents: a review (2022) Int. J. Environ. Anal. Chem., 102, pp. 342-379 | |
dc.relation.references | Cheng, S., Oatley, D.L., Williams, P.M., Wright, C.J., Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters (2012) Water Res., 46, pp. 33-42 | |
dc.relation.references | Choudhary, T.K., Khan, K.S., Hussain, Q., Ahmad, M., Ashfaq, M., Feedstock-induced changes in composition and stability of biochar derived from different agricultural wastes (2019) Arab. J. Geosci., 12 | |
dc.relation.references | Darweesh, M.A., Elgendy, M.Y., Ayad, M.I., Ahmed, A.M.M., Elsayed, N.M.K., Hammad, W.A., Adsorption isotherm, kinetic, and optimization studies for copper (II) removal from aqueous solutions by banana leaves and derived activated carbon (2022) South African J. Chem. Eng., 40, pp. 10-20 | |
dc.relation.references | Davarazar, M., Kamali, M., Lopes, I., Engineered nanomaterials for (waste)water treatment - A scientometric assessment and sustainability aspects (2021) NanoImpact, 22 | |
dc.relation.references | Dias, Y.N., Souza, E.S., da Costa, H.S.C., Melo, L.C.A., Penido, E.S., do Amarante, C.B., Teixeira, O.M.M., Fernandes, A.R., Biochar produced from Amazonian agro-industrial wastes: properties and adsorbent potential of Cd2+ and Cu2+ (2019) Biochar, 1 (4), pp. 389-400 | |
dc.relation.references | El-Kammah, M., Elkhatib, E., Aboukila, E., Ecofriendly nanoparticles derived from water industry byproducts for effective removal of Cu (II) from wastewater: Adsorption isotherms and kinetics (2022) Inorg. Chem. Commun., 146 | |
dc.relation.references | Forgionny, A., Acelas, N.Y., Ocampo-Pérez, R., Padilla-Ortega, E., Pérez, S., Flórez, E., Mechanism adsorption analysis during the removal of Cd2+ and Cu2+ onto cedar sawdust via experiment coupled with theoretical calculation: Mono- and multicomponent systems (2022) Environ. Nanotechnology, Monit. Manag., 18, p. 100715 | |
dc.relation.references | Freundlich, H., Über die adsorption in lösungen (1907) Zeitschrift für Phys. Chemie, 57, pp. 385-470 | |
dc.relation.references | Heidarinejad, Z., Dehghani, M.H., Heidari, M., Javedan, G., Ali, I., Sillanpää, M., Methods for preparation and activation of activated carbon: a review (2020) Environ. Chem. Lett., 18, pp. 393-415 | |
dc.relation.references | Hernández-Montoya, V., Pérez-Cruz, M.A., Mendoza-Castillo, D.I., Moreno-Virgen, M.R., Bonilla-Petriciolet, A., Competitive adsorption of dyes and heavy metals on zeolitic structures (2013) J. Environ. Manage., 116, pp. 213-221 | |
dc.relation.references | Ho, Y.S., McKay, G., Pseudo-second order model for sorption processes (1999) Process Biochem., 34, pp. 451-465 | |
dc.relation.references | Hopkins, D.T., MacQuarrie, S., Hawboldt, K.A., Removal of copper from sulfate solutions using biochar derived from crab processing by-product (2022) J. Environ. Manage., 303, p. 114270 | |
dc.relation.references | Ivanets, A.I., Kitikova, N.V., Shashkova, I.L., Roshchina, M.Y., Srivastava, V., Sillanpää, M., Adsorption performance of hydroxyapatite with different crystalline and porous structure towards metal ions in multicomponent solution (2019) J. Water Process Eng., 32 | |
dc.relation.references | Jagiello, J., Stable Numerical Solution of the Adsorption Integral Equation Using Splines (1994) Langmuir, 10, pp. 2778-2785 | |
dc.relation.references | Katiyar, R., Patel, A.K., Nguyen, T.B., Singhania, R.R., Chen, C.W., Dong, C.D., Adsorption of copper (II) in aqueous solution using biochars derived from Ascophyllum nodosum seaweed (2021) Bioresour. Technol., 328 | |
dc.relation.references | Körbahti, B.K., Artut, K., Geçgel, C., Özer, A., Electrochemical decolorization of textile dyes and removal of metal ions from textile dye and metal ion binary mixtures (2011) Chem. Eng. J., 173, pp. 677-688 | |
dc.relation.references | Kula, I., Uǧurlu, M., Karaoǧlu, H., Çelik, A., Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation (2008) Bioresour. Technol., 99, pp. 492-501 | |
dc.relation.references | Kumar, K.V., Porkodi, K., Relation between some two- and three-parameter isotherm models for the sorption of methylene blue onto lemon peel (2006) J. Hazard. Mater., 138, pp. 633-635 | |
dc.relation.references | Kumar Prajapati, A., Kumar Mondal, M., Green synthesis of Fe3O4-onion peel biochar nanocomposites for adsorption of Cr(VI), methylene blue and congo red dye from aqueous solutions (2021) J. Mol. Liq., 118161 | |
dc.relation.references | Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum (1918) J. Am. Chem. Soc., 40 (9), pp. 1361-1403 | |
dc.relation.references | Lee, L.Z., Ahmad Zaini, M.A., One-step ZnCl2/FeCl3 composites preparation of magnetic activated carbon for effective adsorption of rhodamine B dye (2022) Toxin Rev., 41, pp. 64-81 | |
dc.relation.references | Li, J., Fan, Q., Wu, Y., Wang, X., Chen, C., Tang, Z., Wang, X., Magnetic polydopamine decorated with Mg-Al LDH nanoflakes as a novel bio-based adsorbent for simultaneous removal of potentially toxic metals and anionic dyes (2016) J. Mater. Chem. A, 4, pp. 1737-1746 | |
dc.relation.references | Li, K., Li, X., Li, B., Investigation the adsorption behavior of functional carbon-based composites for efficient removing anions / cations in single and multicomponent systems (2022) Sep. Purif. Technol., 289 | |
dc.relation.references | Limousin, G., Gaudet, J.-P., Charlet, L., Szenknect, S., Barthès, V., Krimissa, M., Sorption isotherms: A review on physical bases, modeling and measurement (2007) Appl. Geochemistry, 22, pp. 249-275 | |
dc.relation.references | Ling, C., Liu, F.Q., Long, C., Chen, T.P., Wu, Q.Y., Li, A.M., Synergic removal and sequential recovery of acid black 1 and copper (II) with hyper-crosslinked resin and inside mechanisms (2014) Chem. Eng. J., 236, pp. 323-331 | |
dc.relation.references | Lokhande, R.S., Singare, P.U., Pimple, D.S., Toxicity Study of Heavy Metals Pollutants in Waste Water Effluent Samples Collected from Taloja Industrial Estate of Mumbai (2011) India. Resour. Environ., 1, pp. 13-19 | |
dc.relation.references | Ma, M., Ying, H., Cao, F., Wang, Q., Ai, N., Adsorption of congo red on mesoporous activated carbon prepared by CO2 physical activation (2020) Chinese J. Chem. Eng., 28, pp. 1069-1076 | |
dc.relation.references | Mahato, N., Agarwal, P., Mohapatra, D., Sinha, M., Dhyani, A., Pathak, B., Tripathi, M.K., Angaiah, S., Biotransformation of citrus waste-ii: Bio-sorbent materials for removal of dyes, heavy metals and toxic chemicals from polluted water (2021) Processes, 9 (9), p. 1544 | |
dc.relation.references | Maiti, P., Siddiqi, H., Kumari, U., Chatterjee, A., Meikap, B.C., Adsorptive remediation of azo dye contaminated wastewater by ZnCl2 modified bio-adsorbent: Batch study and life cycle assessment (2023) Powder Technol., 415 | |
dc.relation.references | Mandal, S., Calderon, J., Marpu, S.B., Omary, M.A., Shi, S.Q., Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, and isotherm studies (2021) J. Contam. Hydrol., 243 | |
dc.relation.references | Mariana, M., Abdul, A.K., Mistar, E.M., Yahya, E.B., Alfatah, T., Danish, M., Amayreh, M., Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption (2021) J. Water Process Eng., 43 | |
dc.relation.references | Meseldzija, S., Petrovic, J., Onjia, A., Volkov-Husovic, T., Nesic, A., Vukelic, N., Utilization of agro-industrial waste for removal of copper ions from aqueous solutions and mining-wastewater (2019) J. Ind. Eng. Chem., 75, pp. 246-252 | |
dc.relation.references | Mohammad-Rezaei, R., Khalilzadeh, B., Rahimi, F., Moradi, S., Shahlaei, M., Derakhshankhah, H., Jaymand, M., Simultaneous removal of cationic and anionic dyes from simulated industrial effluents using a nature-inspired adsorbent (2022) Environ. Res., 214, p. 113966 | |
dc.relation.references | Ng, H.S., Kee, P.E., Yim, H.S., Chen, P.-T., Wei, Y.-H., Chi-Wei Lan, J., Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts (2020) Bioresour. Technol., 302, p. 122889 | |
dc.relation.references | Othmani, A., Magdouli, S., Senthil Kumar, P., Kapoor, A., Chellam, P.V., Gökkuş, Ö., Agricultural waste materials for adsorptive removal of phenols, chromium (VI) and cadmium (II) from wastewater: A review (2022) Environ. Res., 204 | |
dc.relation.references | Paes, L.A.B., Bezerra, B.S., Deus, R.M., Jugend, D., Battistelle, R.A.G., Organic solid waste management in a circular economy perspective – A systematic review and SWOT analysis (2019) J. Clean. Prod., 239 | |
dc.relation.references | Parvin, S., Biswas, B.K., Rahman, M.A., Rahman, M.H., Anik, M.S., Uddin, M.R., Study on adsorption of Congo red onto chemically modified egg shell membrane (2019) Chemosphere, 236, p. 124326 | |
dc.relation.references | Pérez, S., Moreno, A., Du, Z.-Y., López, D., Upgrading of benzofuran to hydrocarbons by hydrodeoxygenation over nickel–molybdenum carbide catalysts supported inside multi-wall carbon nanotubes (2022) Fuel Process. Technol., 236, p. 107416 | |
dc.relation.references | Powell, K.J., Brown, P.L., Byrne, R.H., Gajda, T., Hefter, G., Sjöberg, S., Wanner, H., Chemical speciation of environmentally significant metals with inorganic ligands. PART 2: The Cu2+-OH-, Cl-, CO 32-, SO42-, and PO43- systems (IUPAC Technical Report) (2007) Pure Appl. Chem., 79, pp. 895-950 | |
dc.relation.references | Prajapati, A.K., Mondal, M.K., Novel green strategy for CuO–ZnO–C nanocomposites fabrication using marigold (Tagetes spp.) flower petals extract with and without CTAB treatment for adsorption of Cr(VI) and Congo red dye (2021) J. Environ. Manage., 290 | |
dc.relation.references | Sabela, M.I., Kunene, K., Kanchi, S., Xhakaza, N.M., Bathinapatla, A., Mdluli, P., Sharma, D., Bisetty, K., Removal of copper (II) from wastewater using green vegetable waste derived activated carbon: An approach to equilibrium and kinetic study (2019) Arab. J. Chem., 12, pp. 4331-4339 | |
dc.relation.references | Schuler, N., Casalis, A., Debomy, S., Johnnides, C., Kuper, K., Cointreau, S., Baker, J.L., Lipman, B., (2012), Robin Rajack, with, Ebbe, K., Baeumler, A. What a Waste : A Global Review of Solid Waste Management | |
dc.relation.references | Sellaoui, L., Mendoza-Castillo, D.I., Reynel-Ávila, H.E., Ávila-Camacho, B.A., Díaz-Muñoz, L.L., Ghalla, H., Bonilla-Petriciolet, A., Lamine, A.B., Understanding the adsorption of Pb2+, Hg2+ and Zn2+ from aqueous solution on a lignocellulosic biomass char using advanced statistical physics models and density functional theory simulations (2019) Chem. Eng. J., 365, pp. 305-316 | |
dc.relation.references | Sharma, A., Siddiqui, Z.M., Dhar, S., Mehta, P., Pathania, D., Adsorptive removal of congo red dye (CR) from aqueous solution by Cornulaca monacantha stem and biomass-based activated carbon: isotherm, kinetics and thermodynamics (2019) Sep. Sci. Technol., 54, pp. 916-929 | |
dc.relation.references | Sheindorf, C., Rebhun, M., Sheintuch, M., A Freundlich-type multicomponent isotherm (1981) J. Colloid Interface Sci., 79, pp. 136-142 | |
dc.relation.references | Sing, K.S.W., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) (1985) Pure Appl. Chem., 57, pp. 603-619 | |
dc.relation.references | Singh, I., Mishra, P.K., Nano-membrane Filtration a Novel Application of Nanotechnology for Waste Water Treatment (2020) Mater. Today Proc., 29, pp. 327-332 | |
dc.relation.references | Sips, R., On the structure of a catalyst surface (1948) J. Chem. Phys., 16 (5), pp. 490-495 | |
dc.relation.references | Taylor, A.A., Tsuji, J.S., Garry, M.R., McArdle, M.E., Goodfellow, W.L., Adams, W.J., Menzie, C.A., Critical Review of Exposure and Effects: Implications for Setting Regulatory Health Criteria for Ingested Copper (2020) Environ. Manage., 65 (1), pp. 131-159 | |
dc.relation.references | Treybal, R.E., Mass-Transfer Operations, Third (1981), Edit. ed. Mc Graw Hill International Book Company Singapore | |
dc.relation.references | Vijayaraghavan, K., Balasubramanian, R., Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions (2015) J. Environ. Manage., 160, pp. 283-296 | |
dc.relation.references | Villen-Guzman, M., Cerrillo-Gonzalez, M.M., Paz-Garcia, J.M., Rodriguez-Maroto, J.M., Arhoun, B., Valorization of lemon peel waste as biosorbent for the simultaneous removal of nickel and cadmium from industrial effluents (2021) Environ. Technol. Innov., 21 | |
dc.relation.references | Wu, F.C., Tseng, R.L., Juang, R.S., Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics (2009) Chem. Eng. J., 153, pp. 1-8 | |
dc.relation.references | Yadav, K., Jagadevan, S., Influence of torrefaction and pyrolysis on engineered biochar and its applicability in defluoridation: Insight into adsorption mechanism, batch adsorber design and artificial neural network modelling (2021) J. Anal. Appl. Pyrolysis, 154 | |
dc.relation.references | Yin, G., Song, X., Tao, L., Sarkar, B., Sarmah, A.K., Zhang, W., Lin, Q., Wang, H., Novel Fe-Mn binary oxide-biochar as an adsorbent for removing Cd(II) from aqueous solutions (2020) Chem. Eng. J., 389, p. 124465 | |
dc.relation.references | Zheng, Y., Cheng, B., Fan, J., Yu, J., Ho, W., Review on nickel-based adsorption materials for Congo red (2021) J. Hazard. Mater., 403 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Indexados Scopus [1813]