dc.contributor.author | Rojas-Valencia N | |
dc.contributor.author | Gómez S | |
dc.contributor.author | Giovannini T | |
dc.contributor.author | Cappelli C | |
dc.contributor.author | Restrepo A | |
dc.contributor.author | Núñez−Zarur F. | |
dc.date.accessioned | 2023-10-24T19:24:36Z | |
dc.date.available | 2023-10-24T19:24:36Z | |
dc.date.created | 2023 | |
dc.identifier.issn | 15206106 | |
dc.identifier.uri | http://hdl.handle.net/11407/7982 | |
dc.description.abstract | UV-vis spectra of anionic ibuprofen and naproxen in a model lipid bilayer of the cell membrane are investigated using computational techniques in combination with a comparative analysis of drug spectra in purely aqueous environments. The simulations aim at elucidating the intricacies behind the negligible changes in the maximum absorption wavelength in the experimental spectra. A set of configurations of the systems constituted by lipid, water, and drugs or just water and drugs are obtained from classical Molecular Dynamics simulations. UV-vis spectra are computed in the framework of atomistic Quantum Mechanical/Molecular Mechanics (QM/MM) approaches together with Time-Dependent Density Functional Theory (TD-DFT). Our results suggest that the molecular orbitals involved in the electronic transitions are the same, regardless of the chemical environment. A thorough analysis of the contacts between the drug and water molecules reveals that no significant changes in UV-vis spectra are a consequence of ibuprofen and naproxen molecules being permanently microsolvated by water molecules, despite the presence of lipid molecules. Water molecules microsolvate the charged carboxylate group as expected but also microsolvate the aromatic regions of the drugs. © 2023 American Chemical Society. | eng |
dc.language.iso | eng | |
dc.publisher | American Chemical Society | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149793155&doi=10.1021%2facs.jpcb.2c08332&partnerID=40&md5=c3a62895c149811573e3244b89196fb7 | |
dc.source | J Phys Chem B | |
dc.source | Journal of Physical Chemistry B | eng |
dc.title | Water Maintains the UV-Vis Spectral Features During the Insertion of Anionic Naproxen and Ibuprofen into Model Cell Membranes | eng |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ciencias Básicas | spa |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.1021/acs.jpcb.2c08332 | |
dc.relation.citationvolume | 127 | |
dc.relation.citationissue | 10 | |
dc.relation.citationstartpage | 2146 | |
dc.relation.citationendpage | 2155 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.affiliation | Rojas-Valencia, N., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 50026, Colombia | |
dc.affiliation | Gómez, S., Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa, 56126, Italy | |
dc.affiliation | Giovannini, T., Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa, 56126, Italy | |
dc.affiliation | Cappelli, C., Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa, 56126, Italy | |
dc.affiliation | Restrepo, A., Instituto de Química, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, 50010, Colombia | |
dc.affiliation | Núñez−Zarur, F., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 50026, Colombia | |
dc.relation.references | Ghlichloo, I., Gerriets, V., (2022) Nonsteroidal Anti-Inflammatory Drugs (NSAIDs), , S. A.; | |
dc.relation.references | StatPearls Publishing Treasure Island FL | |
dc.relation.references | Pereira-Leite, C., Nunes, C., Reis, S., Interaction of nonsteroidal anti-inflammatory drugs with membranes: in vitro assessment and relevance for their biological actions (2013) Prog. Lipid Res., 52, pp. 571-584 | |
dc.relation.references | Ngo, V.T.H., Bajaj, T., (2022) Ibuprofen, , StatPearls Publishing Treasure Island FL | |
dc.relation.references | Brutzkus, J.C., Shahrokhi, M., Varacallo, M., (2022) Naproxen, , StatPearls Publishing Treasure Island FL | |
dc.relation.references | Schiff, M., Minic, M., Comparison of the analgesic efficacy and safety of nonprescription doses of naproxen sodium and Ibuprofen in the treatment of osteoarthritis of the knee (2004) J. Rheumatol., 31, pp. 1373-1383 | |
dc.relation.references | Barbato, F., La Rotonda, M.I., Quaglia, F., Interactions of nonsteroidal antiinflammatory drugs with phospholipids: comparison between octanol/buffer partition coefficients and chromatographic indexes on immobilized artificial membranes (1997) J. Pharm. Sci., 86, pp. 225-229 | |
dc.relation.references | Evans, A.M., Comparative pharmacology of S (+)-ibuprofen and (RS)-ibuprofen (2001) Clin. Rheumatol., 20, pp. 9-14 | |
dc.relation.references | Kean, W.F., Lock, C.J.L., Rischke, J., Butt, R., Watson Buchanan, W., Howard-Lock, H., Effect of R and S enantiomers of naproxen on aggregation and thromboxane production in human platelets (1989) J. Pharm. Sci., 78, pp. 324-327 | |
dc.relation.references | Vane, J., Botting, R., Anti-inflammatory drugs and their mechanism of action (1998) Inflamm. Res., 47, pp. 78-87 | |
dc.relation.references | Duggan, K.C., Walters, M.J., Musee, J., Harp, J.M., Kiefer, J.R., Oates, J.A., Marnett, L.J., Molecular basis for cyclooxygenase inhibition by the non-steroidal anti-inflammatory drug naproxen (2010) J. Biol. Chem., 285, pp. 34950-34959 | |
dc.relation.references | Goodwin, G., (2010) Prostaglandins: Biochemistry, Functions, Types, and Roles, , Cell biology research progress | |
dc.relation.references | Nova Science Publisher New York U.S.A. | |
dc.relation.references | Tsuchiya, H., Mizogami, M., Membrane interactivity of non-steroidal anti-inflammatory drugs: a literature review (2020) J. Adv. Med. Biomed. Res., 31, pp. 1-30 | |
dc.relation.references | Manrique-Moreno, M., Villena, F., Sotomayor, C.P., Edwards, A.M., Muñoz, M.A., Garidel, P., Suwalsky, M., Human cells and cell membrane molecular models are affected in vitro by the nonsteroidal anti-inflammatory drug ibuprofen (2011) Biochim. Biophys. Acta - Biomembr., 1808, pp. 2656-2664 | |
dc.relation.references | Seydel, J., Wiese, M., Mannhold, R., Kubinyi, H., Folkers, G., (2009) Drug-Membrane Interactions: Analysis, Drug Distribution, Modeling, , Methods & Principles in Medicinal Chemistry | |
dc.relation.references | Wiley | |
dc.relation.references | Magalhães, L.M., Nunes, C., Lúcio, M., Segundo, M.A., Reis, S., Lima, J.L., High-throughput microplate assay for the determination of drug partition coefficients (2010) Nat. Protoc., 5, pp. 1823-1830 | |
dc.relation.references | Bennion, B.J., Be, N.A., McNerney, M.W., Lao, V., Carlson, E.M., Valdez, C.A., Malfatti, M.A., Lightstone, F.C., Predicting a drug’s membrane permeability: A computational model validated with in vitro permeability assay data (2017) J. Phys. Chem. B, 121, pp. 5228-5237 | |
dc.relation.references | Lichtenberger, L.M., Zhou, Y., Jayaraman, V., Doyen, J.R., O’Neil, R.G., Dial, E.J., Volk, D.E., Krishnamoorti, R., Insight into NSAID-induced membrane alterations, pathogenesis and therapeutics: characterization of interaction of NSAIDs with phosphatidylcholine (2012) Biochim. Biophys. Acta - Mol. Cell Biol. Lipids, 1821, pp. 994-1002 | |
dc.relation.references | Moreno, M.M., Garidel, P., Suwalsky, M., Howe, J., Brandenburg, K., The membrane-activity of Ibuprofen, Diclofenac, and Naproxen: A physico-chemical study with lecithin phospholipids (2009) Biochim. Biophys. Acta - Biomembr., 1788, pp. 1296-1303 | |
dc.relation.references | Boggara, M.B., Mihailescu, M., Krishnamoorti, R., Structural association of nonsteroidal anti-inflammatory drugs with lipid membranes (2012) J. Am. Chem. Soc., 134, pp. 19669-19676 | |
dc.relation.references | Rojas-Valencia, N., Lans, I., Manrique-Moreno, M., Hadad, C.Z., Restrepo, A., Entropy drives the insertion of ibuprofen into model membranes (2018) Phys. Chem. Chem. Phys., 20, pp. 24869-24876 | |
dc.relation.references | Rojas-Valencia, N., Gómez, S., Núñez-Zarur, F., Cappelli, C., Hadad, C., Restrepo, A., Thermodynamics and Intermolecular Interactions during the Insertion of Anionic Naproxen into Model Cell Membranes (2021) J. Phys. Chem. B, 125, pp. 10383-10391 | |
dc.relation.references | Santos, N.C., Prieto, M., Castanho, M.A., Quantifying molecular partition into model systems of biomembranes: an emphasis on optical spectroscopic methods (2003) Biochim. Biophys. Acta - Biomembr., 1612, pp. 123-135 | |
dc.relation.references | Fernandes, E., Soares, T.B., Gonçalves, H., Lúcio, M., Spectroscopic studies as a toolbox for biophysical and chemical characterization of lipid-based nanotherapeutics (2018) Front. Chem., 6, p. 323 | |
dc.relation.references | Du, L., Liu, X., Huang, W., Wang, E., A study on the interaction between ibuprofen and bilayer lipid membrane (2006) Electrochim. Acta, 51, pp. 5754-5760 | |
dc.relation.references | Raab, M.T., Prymek, A.K., Giordano, A.N., Estimation of the ground and excited state dipole moments for ibuprofen and naproxen sodium using the solvatochromic shift method (2021) J. Undergrad. Chem. Res., 20, p. 68 | |
dc.relation.references | Chen, X., Qiao, W., Miao, W., Zhang, Y., Mu, X., Wang, J., The Dependence of implicit Solvent Model parameters and electronic Absorption Spectra and photoinduced charge transfer (2020) Sci. Rep., 10, pp. 1-8 | |
dc.relation.references | Ambrosetti, M., Skoko, S., Giovannini, T., Cappelli, C., Quantum Mechanics/Fluctuating Charge Protocol to Compute Solvatochromic Shifts (2021) J. Chem. Theory Comput., 17, pp. 7146-7156 | |
dc.relation.references | Brunk, E., Rothlisberger, U., Mixed quantum mechanical/molecular mechanical molecular dynamics simulations of biological systems in ground and electronically excited states (2015) Chem. Rev., 115, pp. 6217-6263 | |
dc.relation.references | Zhang, K., Ren, S., Caricato, M., Multistate QM/QM Extrapolation of UV/Vis Absorption Spectra with Point Charge Embedding (2020) J. Chem. Theory Comput., 16, pp. 4361-4372 | |
dc.relation.references | Zuehlsdorff, T.J., Isborn, C.M., Modeling absorption spectra of molecules in solution (2019) Int. J. Quantum Chem., 119 | |
dc.relation.references | Giovannini, T., Macchiagodena, M., Ambrosetti, M., Puglisi, A., Lafiosca, P., Lo Gerfo, G., Egidi, F., Cappelli, C., Simulating vertical excitation energies of solvated dyes: From continuum to polarizable discrete modeling (2019) Int. J. Quantum Chem., 119 | |
dc.relation.references | Goletto, L., Giovannini, T., Folkestad, S.D., Koch, H., Combining multilevel Hartree-Fock and multilevel coupled cluster approaches with molecular mechanics: a study of electronic excitations in solutions (2021) Phys. Chem. Chem. Phys., 23, pp. 4413-4425 | |
dc.relation.references | Cwiklik, L., Aquino, A.J., Vazdar, M., Jurkiewicz, P., Pittner, J., Hof, M., Lischka, H., Absorption and fluorescence of PRODAN in phospholipid bilayers: a combined quantum mechanics and classical molecular dynamics study (2011) J. Phys. Chem. A, 115, pp. 11428-11437 | |
dc.relation.references | Rojas-Valencia, N., Gómez, S., Montillo, S., Manrique-Moreno, M., Cappelli, C., Hadad, C., Restrepo, A., Evolution of Bonding during the Insertion of Anionic Ibuprofen into Model Cell Membranes (2020) J. Phys. Chem. B, 124, pp. 79-90 | |
dc.relation.references | Kästner, J., Umbrella sampling (2011) Wiley Interdiscip. Rev. Comput. Mol. Sci., 1, pp. 932-942 | |
dc.relation.references | Skoko, S., Ambrosetti, M., Giovannini, T., Cappelli, C., Simulating Absorption Spectra of Flavonoids in Aqueous Solution: A Polarizable QM/MM Study (2020) Molecules, 25, p. 5853 | |
dc.relation.references | Giovannini, T., Grazioli, L., Ambrosetti, M., Cappelli, C., Calculation of ir spectra with a fully polarizable qm/mm approach based on fluctuating charges and fluctuating dipoles (2019) J. Chem. Theory Comput., 15, pp. 5495-5507 | |
dc.relation.references | Giovannini, T., Ambrosetti, M., Cappelli, C., A polarizable embedding approach to second harmonic generation (SHG) of molecular systems in aqueous solutions (2018) Theor. Chem. Acc., 137, p. 74 | |
dc.relation.references | Senn, H.M., Thiel, W., QM/MM methods for biomolecular systems (2009) Angew. Chem., Int. Ed., 48, pp. 1198-1229 | |
dc.relation.references | Giovannini, T., Egidi, F., Cappelli, C., Molecular spectroscopy of aqueous solutions: a theoretical perspective (2020) Chem. Soc. Rev., 49, pp. 5664-5677 | |
dc.relation.references | Gómez, S., Bottari, C., Egidi, F., Giovannini, T., Rossi, B., Cappelli, C., Amide Spectral Fingerprints are Hydrogen Bonding-Mediated (2022) J. Phys. Chem. Lett., 13, pp. 6200-6207 | |
dc.relation.references | Dohn, A.O., Multiscale electrostatic embedding simulations for modeling structure and dynamics of molecules in solution: a tutorial review (2020) Int. J. Quantum Chem., 120 | |
dc.relation.references | Gómez, S., Giovannini, T., Cappelli, C., Multiple Facets of Modeling Electronic Absorption Spectra of Systems in Solution (2023) ACS Physical Chemistry Au, 3, pp. 1-16 | |
dc.relation.references | Gómez, S., Giovannini, T., Cappelli, C., Absorption spectra of xanthines in aqueous solution: A computational study (2020) Phys. Chem. Chem. Phys., 22, pp. 5929-5941 | |
dc.relation.references | Gómez, S., Egidi, F., Puglisi, A., Giovannini, T., Rossi, B., Cappelli, C., Unlocking the power of resonance Raman spectroscopy: The case of amides in aqueous solution (2022) J. Mol. Liq., 346, p. 117841 | |
dc.relation.references | Uribe, L., Gómez, S., Giovannini, T., Egidi, F., Restrepo, A., An efficient and robust procedure to calculate absorption spectra of aqueous charged species applied to NO2- (2021) Phys. Chem. Chem. Phys., 23, pp. 14857-14872 | |
dc.relation.references | Uribe, L., Gómez, S., Egidi, F., Giovannini, T., Restrepo, A., Computational hints for the simultaneous spectroscopic detection of common contaminants in water (2022) J. Mol. Liq., 355, p. 118908 | |
dc.relation.references | Warshel, A., Levitt, M., Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme (1976) J. Mol. Biol., 103, pp. 227-249 | |
dc.relation.references | Mennucci, B., Corni, S., Multiscale modelling of photoinduced processes in composite systems (2019) Nat. Rev. Chem., 3, pp. 315-330 | |
dc.relation.references | Cappelli, C., Integrated QM/polarizable MM/continuum approaches to model chiroptical properties of strongly interacting solute-solvent systems (2016) Int. J. Quantum Chem., 116, pp. 1532-1542 | |
dc.relation.references | Gómez, S.A., Rojas-Valencia, N., Gómez, S., Egidi, F., Cappelli, C., Restrepo, A., Binding of SARS-CoV-2 to Cell Receptors: A Tale of Molecular Evolution (2021) ChemBioChem., 22, pp. 724-732 | |
dc.relation.references | Gómez, S.A., Rojas-Valencia, N., Gómez, S., Cappelli, C., Restrepo, A., The Role of Spike Protein Mutations in the Infectious Power of SARS-COV-2 Variants: A Molecular Interaction Perspective (2022) ChemBioChem., 23 | |
dc.relation.references | Klauda, J.B., Venable, R.M., Freites, J.A., O’Connor, J.W., Tobias, D.J., Mondragon-Ramirez, C., Vorobyov, I., Pastor, R.W., Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types (2010) J. Phys. Chem. B, 114, pp. 7830-7843. , - | |
dc.relation.references | PMID 20496934 | |
dc.relation.references | Vanommeslaeghe, K., MacKerell, A.D., Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing (2012) J. Chem. Inf. Model, 52, pp. 3144-3154 | |
dc.relation.references | Vanommeslaeghe, K., Raman, E.P., MacKerell, A.D., Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges (2012) J. Chem. Inf. Model, 52, pp. 3155-3168 | |
dc.relation.references | Gómez, S., Rojas-Valencia, N., Gómez, S.A., Cappelli, C., Merino, G., Restrepo, A., A molecular twist on hydrophobicity (2021) Chem. Sci., 12, pp. 9233-9245 | |
dc.relation.references | Rojas-Valencia, N., Gómez, S., Guerra, D., Restrepo, A., A detailed look at the bonding interactions in the microsolvation of monoatomic cations (2020) Phys. Chem. Chem. Phys., 22, pp. 13049-13061 | |
dc.relation.references | Gómez, S.A., Rojas-Valencia, N., Gómez, S., Lans, I., Restrepo, A., Initial recognition and attachment of the Zika virus to host cells: A molecular dynamics and quantum interaction approach (2022) ChemBioChem., 23, p. 1 | |
dc.relation.references | Gómez, S., Rojas-Valencia, N., Giovannini, T., Restrepo, A., Cappelli, C., Ring Vibrations to Sense Anionic Ibuprofen in Aqueous Solution as Revealed by Resonance Raman (2022) Molecules, 27, p. 442 | |
dc.relation.references | Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Nakatsuji, H., (2016) Gaussian 16, , Revision B.01 | |
dc.relation.references | Gaussian Inc. Wallingford CT | |
dc.relation.references | Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Karafiloglou, P., Weinhold, F., (2018) NBO 7.0, , Theoretical Chemistry Institute University of Wisconsin Madison WI | |
dc.relation.references | Choina, J., Kosslick, H., Fischer, C., Flechsig, G.-U., Frunza, L., Schulz, A., Photocatalytic decomposition of pharmaceutical ibuprofen pollutions in water over titania catalyst (2013) Appl. Catal. B: Environ, 129, pp. 589-598 | |
dc.relation.references | Picollo, M., Aceto, M., Vitorino, T., UV-vis spectroscopy (2019) Phys. Sci. Rev., 4, p. 1 | |
dc.relation.references | Arany, E., Szabó, R.K., Apáti, L., Alapi, T., Ilisz, I., Mazellier, P., Dombi, A., Gajda-Schrantz, K., Degradation of naproxen by UV, VUV photolysis and their combination (2013) J. Hazard. Mater., 262, pp. 151-157 | |
dc.relation.references | Saji, R.S., Prasana, J.C., Muthu, S., George, J., Kuruvilla, T.K., Raajaraman, B., Spectroscopic and quantum computational study on naproxen sodium (2020) Spectrochim. Acta - A: Mol. Biomol. Spectrosc., 226, p. 117614 | |
dc.relation.references | Ximenes, V.F., Morgon, N.H., Robinson de Souza, A., Solvent-dependent inversion of circular dichroism signal in naproxen: An unusual effect! (2018) Chirality, 30, pp. 1049-1053 | |
dc.relation.references | Friedel, R., Orchin, M., (1951) Ultraviolet Spectra of Aromatic Compounds, , John Wiley & Sons Inc. New York | |
dc.relation.references | Giovannini, T., Egidi, F., Cappelli, C., Theory and algorithms for chiroptical properties and spectroscopies of aqueous systems (2020) Phys. Chem. Chem. Phys., 22, pp. 22864-22879 | |
dc.relation.references | Liu, M., Chen, L., Tian, T., Zhang, Z., Li, X., Identification and quantitation of enantiomers by capillary electrophoresis and circular dichroism independent of single enantiomer standard (2019) Anal. Chem., 91, pp. 13803-13809 | |
dc.relation.references | Zapata-Escobar, A., Manrique-Moreno, M., Guerra, D., Hadad, C.Z., Restrepo, A., A combined experimental and computational study of the molecular interactions between anionic ibuprofen and water (2014) J. Chem. Phys., 140, p. 184312 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |