Mostrar el registro sencillo del ítem

dc.contributor.authorRojas-Valencia N
dc.contributor.authorGómez S
dc.contributor.authorGiovannini T
dc.contributor.authorCappelli C
dc.contributor.authorRestrepo A
dc.contributor.authorNúñez−Zarur F.
dc.date.accessioned2023-10-24T19:24:36Z
dc.date.available2023-10-24T19:24:36Z
dc.date.created2023
dc.identifier.issn15206106
dc.identifier.urihttp://hdl.handle.net/11407/7982
dc.description.abstractUV-vis spectra of anionic ibuprofen and naproxen in a model lipid bilayer of the cell membrane are investigated using computational techniques in combination with a comparative analysis of drug spectra in purely aqueous environments. The simulations aim at elucidating the intricacies behind the negligible changes in the maximum absorption wavelength in the experimental spectra. A set of configurations of the systems constituted by lipid, water, and drugs or just water and drugs are obtained from classical Molecular Dynamics simulations. UV-vis spectra are computed in the framework of atomistic Quantum Mechanical/Molecular Mechanics (QM/MM) approaches together with Time-Dependent Density Functional Theory (TD-DFT). Our results suggest that the molecular orbitals involved in the electronic transitions are the same, regardless of the chemical environment. A thorough analysis of the contacts between the drug and water molecules reveals that no significant changes in UV-vis spectra are a consequence of ibuprofen and naproxen molecules being permanently microsolvated by water molecules, despite the presence of lipid molecules. Water molecules microsolvate the charged carboxylate group as expected but also microsolvate the aromatic regions of the drugs. © 2023 American Chemical Society.eng
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85149793155&doi=10.1021%2facs.jpcb.2c08332&partnerID=40&md5=c3a62895c149811573e3244b89196fb7
dc.sourceJ Phys Chem B
dc.sourceJournal of Physical Chemistry Beng
dc.titleWater Maintains the UV-Vis Spectral Features During the Insertion of Anionic Naproxen and Ibuprofen into Model Cell Membraneseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1021/acs.jpcb.2c08332
dc.relation.citationvolume127
dc.relation.citationissue10
dc.relation.citationstartpage2146
dc.relation.citationendpage2155
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationRojas-Valencia, N., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 50026, Colombia
dc.affiliationGómez, S., Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa, 56126, Italy
dc.affiliationGiovannini, T., Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa, 56126, Italy
dc.affiliationCappelli, C., Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa, 56126, Italy
dc.affiliationRestrepo, A., Instituto de Química, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, 50010, Colombia
dc.affiliationNúñez−Zarur, F., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 50026, Colombia
dc.relation.referencesGhlichloo, I., Gerriets, V., (2022) Nonsteroidal Anti-Inflammatory Drugs (NSAIDs), , S. A.;
dc.relation.referencesStatPearls Publishing Treasure Island FL
dc.relation.referencesPereira-Leite, C., Nunes, C., Reis, S., Interaction of nonsteroidal anti-inflammatory drugs with membranes: in vitro assessment and relevance for their biological actions (2013) Prog. Lipid Res., 52, pp. 571-584
dc.relation.referencesNgo, V.T.H., Bajaj, T., (2022) Ibuprofen, , StatPearls Publishing Treasure Island FL
dc.relation.referencesBrutzkus, J.C., Shahrokhi, M., Varacallo, M., (2022) Naproxen, , StatPearls Publishing Treasure Island FL
dc.relation.referencesSchiff, M., Minic, M., Comparison of the analgesic efficacy and safety of nonprescription doses of naproxen sodium and Ibuprofen in the treatment of osteoarthritis of the knee (2004) J. Rheumatol., 31, pp. 1373-1383
dc.relation.referencesBarbato, F., La Rotonda, M.I., Quaglia, F., Interactions of nonsteroidal antiinflammatory drugs with phospholipids: comparison between octanol/buffer partition coefficients and chromatographic indexes on immobilized artificial membranes (1997) J. Pharm. Sci., 86, pp. 225-229
dc.relation.referencesEvans, A.M., Comparative pharmacology of S (+)-ibuprofen and (RS)-ibuprofen (2001) Clin. Rheumatol., 20, pp. 9-14
dc.relation.referencesKean, W.F., Lock, C.J.L., Rischke, J., Butt, R., Watson Buchanan, W., Howard-Lock, H., Effect of R and S enantiomers of naproxen on aggregation and thromboxane production in human platelets (1989) J. Pharm. Sci., 78, pp. 324-327
dc.relation.referencesVane, J., Botting, R., Anti-inflammatory drugs and their mechanism of action (1998) Inflamm. Res., 47, pp. 78-87
dc.relation.referencesDuggan, K.C., Walters, M.J., Musee, J., Harp, J.M., Kiefer, J.R., Oates, J.A., Marnett, L.J., Molecular basis for cyclooxygenase inhibition by the non-steroidal anti-inflammatory drug naproxen (2010) J. Biol. Chem., 285, pp. 34950-34959
dc.relation.referencesGoodwin, G., (2010) Prostaglandins: Biochemistry, Functions, Types, and Roles, , Cell biology research progress
dc.relation.referencesNova Science Publisher New York U.S.A.
dc.relation.referencesTsuchiya, H., Mizogami, M., Membrane interactivity of non-steroidal anti-inflammatory drugs: a literature review (2020) J. Adv. Med. Biomed. Res., 31, pp. 1-30
dc.relation.referencesManrique-Moreno, M., Villena, F., Sotomayor, C.P., Edwards, A.M., Muñoz, M.A., Garidel, P., Suwalsky, M., Human cells and cell membrane molecular models are affected in vitro by the nonsteroidal anti-inflammatory drug ibuprofen (2011) Biochim. Biophys. Acta - Biomembr., 1808, pp. 2656-2664
dc.relation.referencesSeydel, J., Wiese, M., Mannhold, R., Kubinyi, H., Folkers, G., (2009) Drug-Membrane Interactions: Analysis, Drug Distribution, Modeling, , Methods & Principles in Medicinal Chemistry
dc.relation.referencesWiley
dc.relation.referencesMagalhães, L.M., Nunes, C., Lúcio, M., Segundo, M.A., Reis, S., Lima, J.L., High-throughput microplate assay for the determination of drug partition coefficients (2010) Nat. Protoc., 5, pp. 1823-1830
dc.relation.referencesBennion, B.J., Be, N.A., McNerney, M.W., Lao, V., Carlson, E.M., Valdez, C.A., Malfatti, M.A., Lightstone, F.C., Predicting a drug’s membrane permeability: A computational model validated with in vitro permeability assay data (2017) J. Phys. Chem. B, 121, pp. 5228-5237
dc.relation.referencesLichtenberger, L.M., Zhou, Y., Jayaraman, V., Doyen, J.R., O’Neil, R.G., Dial, E.J., Volk, D.E., Krishnamoorti, R., Insight into NSAID-induced membrane alterations, pathogenesis and therapeutics: characterization of interaction of NSAIDs with phosphatidylcholine (2012) Biochim. Biophys. Acta - Mol. Cell Biol. Lipids, 1821, pp. 994-1002
dc.relation.referencesMoreno, M.M., Garidel, P., Suwalsky, M., Howe, J., Brandenburg, K., The membrane-activity of Ibuprofen, Diclofenac, and Naproxen: A physico-chemical study with lecithin phospholipids (2009) Biochim. Biophys. Acta - Biomembr., 1788, pp. 1296-1303
dc.relation.referencesBoggara, M.B., Mihailescu, M., Krishnamoorti, R., Structural association of nonsteroidal anti-inflammatory drugs with lipid membranes (2012) J. Am. Chem. Soc., 134, pp. 19669-19676
dc.relation.referencesRojas-Valencia, N., Lans, I., Manrique-Moreno, M., Hadad, C.Z., Restrepo, A., Entropy drives the insertion of ibuprofen into model membranes (2018) Phys. Chem. Chem. Phys., 20, pp. 24869-24876
dc.relation.referencesRojas-Valencia, N., Gómez, S., Núñez-Zarur, F., Cappelli, C., Hadad, C., Restrepo, A., Thermodynamics and Intermolecular Interactions during the Insertion of Anionic Naproxen into Model Cell Membranes (2021) J. Phys. Chem. B, 125, pp. 10383-10391
dc.relation.referencesSantos, N.C., Prieto, M., Castanho, M.A., Quantifying molecular partition into model systems of biomembranes: an emphasis on optical spectroscopic methods (2003) Biochim. Biophys. Acta - Biomembr., 1612, pp. 123-135
dc.relation.referencesFernandes, E., Soares, T.B., Gonçalves, H., Lúcio, M., Spectroscopic studies as a toolbox for biophysical and chemical characterization of lipid-based nanotherapeutics (2018) Front. Chem., 6, p. 323
dc.relation.referencesDu, L., Liu, X., Huang, W., Wang, E., A study on the interaction between ibuprofen and bilayer lipid membrane (2006) Electrochim. Acta, 51, pp. 5754-5760
dc.relation.referencesRaab, M.T., Prymek, A.K., Giordano, A.N., Estimation of the ground and excited state dipole moments for ibuprofen and naproxen sodium using the solvatochromic shift method (2021) J. Undergrad. Chem. Res., 20, p. 68
dc.relation.referencesChen, X., Qiao, W., Miao, W., Zhang, Y., Mu, X., Wang, J., The Dependence of implicit Solvent Model parameters and electronic Absorption Spectra and photoinduced charge transfer (2020) Sci. Rep., 10, pp. 1-8
dc.relation.referencesAmbrosetti, M., Skoko, S., Giovannini, T., Cappelli, C., Quantum Mechanics/Fluctuating Charge Protocol to Compute Solvatochromic Shifts (2021) J. Chem. Theory Comput., 17, pp. 7146-7156
dc.relation.referencesBrunk, E., Rothlisberger, U., Mixed quantum mechanical/molecular mechanical molecular dynamics simulations of biological systems in ground and electronically excited states (2015) Chem. Rev., 115, pp. 6217-6263
dc.relation.referencesZhang, K., Ren, S., Caricato, M., Multistate QM/QM Extrapolation of UV/Vis Absorption Spectra with Point Charge Embedding (2020) J. Chem. Theory Comput., 16, pp. 4361-4372
dc.relation.referencesZuehlsdorff, T.J., Isborn, C.M., Modeling absorption spectra of molecules in solution (2019) Int. J. Quantum Chem., 119
dc.relation.referencesGiovannini, T., Macchiagodena, M., Ambrosetti, M., Puglisi, A., Lafiosca, P., Lo Gerfo, G., Egidi, F., Cappelli, C., Simulating vertical excitation energies of solvated dyes: From continuum to polarizable discrete modeling (2019) Int. J. Quantum Chem., 119
dc.relation.referencesGoletto, L., Giovannini, T., Folkestad, S.D., Koch, H., Combining multilevel Hartree-Fock and multilevel coupled cluster approaches with molecular mechanics: a study of electronic excitations in solutions (2021) Phys. Chem. Chem. Phys., 23, pp. 4413-4425
dc.relation.referencesCwiklik, L., Aquino, A.J., Vazdar, M., Jurkiewicz, P., Pittner, J., Hof, M., Lischka, H., Absorption and fluorescence of PRODAN in phospholipid bilayers: a combined quantum mechanics and classical molecular dynamics study (2011) J. Phys. Chem. A, 115, pp. 11428-11437
dc.relation.referencesRojas-Valencia, N., Gómez, S., Montillo, S., Manrique-Moreno, M., Cappelli, C., Hadad, C., Restrepo, A., Evolution of Bonding during the Insertion of Anionic Ibuprofen into Model Cell Membranes (2020) J. Phys. Chem. B, 124, pp. 79-90
dc.relation.referencesKästner, J., Umbrella sampling (2011) Wiley Interdiscip. Rev. Comput. Mol. Sci., 1, pp. 932-942
dc.relation.referencesSkoko, S., Ambrosetti, M., Giovannini, T., Cappelli, C., Simulating Absorption Spectra of Flavonoids in Aqueous Solution: A Polarizable QM/MM Study (2020) Molecules, 25, p. 5853
dc.relation.referencesGiovannini, T., Grazioli, L., Ambrosetti, M., Cappelli, C., Calculation of ir spectra with a fully polarizable qm/mm approach based on fluctuating charges and fluctuating dipoles (2019) J. Chem. Theory Comput., 15, pp. 5495-5507
dc.relation.referencesGiovannini, T., Ambrosetti, M., Cappelli, C., A polarizable embedding approach to second harmonic generation (SHG) of molecular systems in aqueous solutions (2018) Theor. Chem. Acc., 137, p. 74
dc.relation.referencesSenn, H.M., Thiel, W., QM/MM methods for biomolecular systems (2009) Angew. Chem., Int. Ed., 48, pp. 1198-1229
dc.relation.referencesGiovannini, T., Egidi, F., Cappelli, C., Molecular spectroscopy of aqueous solutions: a theoretical perspective (2020) Chem. Soc. Rev., 49, pp. 5664-5677
dc.relation.referencesGómez, S., Bottari, C., Egidi, F., Giovannini, T., Rossi, B., Cappelli, C., Amide Spectral Fingerprints are Hydrogen Bonding-Mediated (2022) J. Phys. Chem. Lett., 13, pp. 6200-6207
dc.relation.referencesDohn, A.O., Multiscale electrostatic embedding simulations for modeling structure and dynamics of molecules in solution: a tutorial review (2020) Int. J. Quantum Chem., 120
dc.relation.referencesGómez, S., Giovannini, T., Cappelli, C., Multiple Facets of Modeling Electronic Absorption Spectra of Systems in Solution (2023) ACS Physical Chemistry Au, 3, pp. 1-16
dc.relation.referencesGómez, S., Giovannini, T., Cappelli, C., Absorption spectra of xanthines in aqueous solution: A computational study (2020) Phys. Chem. Chem. Phys., 22, pp. 5929-5941
dc.relation.referencesGómez, S., Egidi, F., Puglisi, A., Giovannini, T., Rossi, B., Cappelli, C., Unlocking the power of resonance Raman spectroscopy: The case of amides in aqueous solution (2022) J. Mol. Liq., 346, p. 117841
dc.relation.referencesUribe, L., Gómez, S., Giovannini, T., Egidi, F., Restrepo, A., An efficient and robust procedure to calculate absorption spectra of aqueous charged species applied to NO2- (2021) Phys. Chem. Chem. Phys., 23, pp. 14857-14872
dc.relation.referencesUribe, L., Gómez, S., Egidi, F., Giovannini, T., Restrepo, A., Computational hints for the simultaneous spectroscopic detection of common contaminants in water (2022) J. Mol. Liq., 355, p. 118908
dc.relation.referencesWarshel, A., Levitt, M., Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme (1976) J. Mol. Biol., 103, pp. 227-249
dc.relation.referencesMennucci, B., Corni, S., Multiscale modelling of photoinduced processes in composite systems (2019) Nat. Rev. Chem., 3, pp. 315-330
dc.relation.referencesCappelli, C., Integrated QM/polarizable MM/continuum approaches to model chiroptical properties of strongly interacting solute-solvent systems (2016) Int. J. Quantum Chem., 116, pp. 1532-1542
dc.relation.referencesGómez, S.A., Rojas-Valencia, N., Gómez, S., Egidi, F., Cappelli, C., Restrepo, A., Binding of SARS-CoV-2 to Cell Receptors: A Tale of Molecular Evolution (2021) ChemBioChem., 22, pp. 724-732
dc.relation.referencesGómez, S.A., Rojas-Valencia, N., Gómez, S., Cappelli, C., Restrepo, A., The Role of Spike Protein Mutations in the Infectious Power of SARS-COV-2 Variants: A Molecular Interaction Perspective (2022) ChemBioChem., 23
dc.relation.referencesKlauda, J.B., Venable, R.M., Freites, J.A., O’Connor, J.W., Tobias, D.J., Mondragon-Ramirez, C., Vorobyov, I., Pastor, R.W., Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types (2010) J. Phys. Chem. B, 114, pp. 7830-7843. , -
dc.relation.referencesPMID 20496934
dc.relation.referencesVanommeslaeghe, K., MacKerell, A.D., Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing (2012) J. Chem. Inf. Model, 52, pp. 3144-3154
dc.relation.referencesVanommeslaeghe, K., Raman, E.P., MacKerell, A.D., Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges (2012) J. Chem. Inf. Model, 52, pp. 3155-3168
dc.relation.referencesGómez, S., Rojas-Valencia, N., Gómez, S.A., Cappelli, C., Merino, G., Restrepo, A., A molecular twist on hydrophobicity (2021) Chem. Sci., 12, pp. 9233-9245
dc.relation.referencesRojas-Valencia, N., Gómez, S., Guerra, D., Restrepo, A., A detailed look at the bonding interactions in the microsolvation of monoatomic cations (2020) Phys. Chem. Chem. Phys., 22, pp. 13049-13061
dc.relation.referencesGómez, S.A., Rojas-Valencia, N., Gómez, S., Lans, I., Restrepo, A., Initial recognition and attachment of the Zika virus to host cells: A molecular dynamics and quantum interaction approach (2022) ChemBioChem., 23, p. 1
dc.relation.referencesGómez, S., Rojas-Valencia, N., Giovannini, T., Restrepo, A., Cappelli, C., Ring Vibrations to Sense Anionic Ibuprofen in Aqueous Solution as Revealed by Resonance Raman (2022) Molecules, 27, p. 442
dc.relation.referencesFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Nakatsuji, H., (2016) Gaussian 16, , Revision B.01
dc.relation.referencesGaussian Inc. Wallingford CT
dc.relation.referencesGlendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Karafiloglou, P., Weinhold, F., (2018) NBO 7.0, , Theoretical Chemistry Institute University of Wisconsin Madison WI
dc.relation.referencesChoina, J., Kosslick, H., Fischer, C., Flechsig, G.-U., Frunza, L., Schulz, A., Photocatalytic decomposition of pharmaceutical ibuprofen pollutions in water over titania catalyst (2013) Appl. Catal. B: Environ, 129, pp. 589-598
dc.relation.referencesPicollo, M., Aceto, M., Vitorino, T., UV-vis spectroscopy (2019) Phys. Sci. Rev., 4, p. 1
dc.relation.referencesArany, E., Szabó, R.K., Apáti, L., Alapi, T., Ilisz, I., Mazellier, P., Dombi, A., Gajda-Schrantz, K., Degradation of naproxen by UV, VUV photolysis and their combination (2013) J. Hazard. Mater., 262, pp. 151-157
dc.relation.referencesSaji, R.S., Prasana, J.C., Muthu, S., George, J., Kuruvilla, T.K., Raajaraman, B., Spectroscopic and quantum computational study on naproxen sodium (2020) Spectrochim. Acta - A: Mol. Biomol. Spectrosc., 226, p. 117614
dc.relation.referencesXimenes, V.F., Morgon, N.H., Robinson de Souza, A., Solvent-dependent inversion of circular dichroism signal in naproxen: An unusual effect! (2018) Chirality, 30, pp. 1049-1053
dc.relation.referencesFriedel, R., Orchin, M., (1951) Ultraviolet Spectra of Aromatic Compounds, , John Wiley & Sons Inc. New York
dc.relation.referencesGiovannini, T., Egidi, F., Cappelli, C., Theory and algorithms for chiroptical properties and spectroscopies of aqueous systems (2020) Phys. Chem. Chem. Phys., 22, pp. 22864-22879
dc.relation.referencesLiu, M., Chen, L., Tian, T., Zhang, Z., Li, X., Identification and quantitation of enantiomers by capillary electrophoresis and circular dichroism independent of single enantiomer standard (2019) Anal. Chem., 91, pp. 13803-13809
dc.relation.referencesZapata-Escobar, A., Manrique-Moreno, M., Guerra, D., Hadad, C.Z., Restrepo, A., A combined experimental and computational study of the molecular interactions between anionic ibuprofen and water (2014) J. Chem. Phys., 140, p. 184312
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem