Mostrar el registro sencillo del ítem

dc.contributor.authorCastellanos-Cárdenas D
dc.contributor.authorCastrillón F
dc.contributor.authorVásquez R.E
dc.contributor.authorPosada N.L
dc.contributor.authorCamacho O.
dc.date.accessioned2023-10-24T19:24:39Z
dc.date.available2023-10-24T19:24:39Z
dc.date.created2022
dc.identifier.issn9591524
dc.identifier.urihttp://hdl.handle.net/11407/7987
dc.description.abstractThis work addresses a new set of tuning rules for Sliding Mode Control (SMC) applied to second-order inverse-response plus variable dead time processes. Descriptions of the dynamics of inverse response systems and sliding-mode controllers are first provided. Then, we present the design process for the set of SMC tuning rules, using dimensional analysis, experimental design, optimization, and model reduction techniques for set-point tracking. The obtained expressions are simple, which eases the application of the proposed step-by-step systematic methodology. The performance and robustness of the proposed SMC tuning method are compared to other well-known controllers, and then applied to a Van de Vusse isothermal reactor, which is a complex nonlinear second-order inverse-response system that exhibits variable dead time. The performance achieved with the new SMC tuning method is good for set-point tracking, while exhibiting a good behavior for disturbance rejection, and can be applied considering a wide-range of parameters of the process’ transfer function. © 2022 The Author(s)eng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85131252135&doi=10.1016%2fj.jprocont.2022.05.001&partnerID=40&md5=50b62b898a4642879a481f36fb2c19c3
dc.sourceJ Process Control
dc.sourceJournal of Process Controleng
dc.subjectController tuningeng
dc.subjectDead-timeeng
dc.subjectNon-minimum phase systemseng
dc.subjectProcess controleng
dc.subjectSliding Mode Control laweng
dc.titleA new Sliding Mode Control tuning approach for second-order inverse-response plus variable dead time processeseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Telecomunicacionesspa
dc.type.spaArtículo
dc.identifier.doi10.1016/j.jprocont.2022.05.001
dc.relation.citationvolume115
dc.relation.citationstartpage77
dc.relation.citationendpage88
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationCastellanos-Cárdenas, D., School of Engineering, Universidad de Medellín, Carrera 87 # 30-65, Medellín, 050026, Colombia
dc.affiliationCastrillón, F., School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín, 050031, Colombia
dc.affiliationVásquez, R.E., School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín, 050031, Colombia
dc.affiliationPosada, N.L., School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín, 050031, Colombia
dc.affiliationCamacho, O., Colegio de Ciencias e Ingenierías “El Politécnico”, Universidad San Francisco de Quito USFQ, Quito, 170157, Ecuador
dc.relation.referencesZhang, W., Xu, X., Sun, Y., Quantitative performance design for inverse-response processes (2000) Ind. Eng. Chem. Res., 39 (6), pp. 2056-2061
dc.relation.referencesWaller, K.V., Nygardas, C., On inverse response in process control (1975) Ind. Eng. Chem. Fundam., 14 (3), pp. 221-223
dc.relation.referencesIinoya, K., Altpeter, R.J., Inverse response in process control (1962) Ind. Eng. Chem. Res., 54 (7), pp. 39-43
dc.relation.referencesHongdong, Z., Guanghui, Z., Huihe, S., Control of the process with inverse response and dead-time based on disturbance observer (2005), pp. 4826-4831. , Proceedings of the 2005 American Control Conference, vol. 7
dc.relation.referencesOgunnaike, B.A., Ray, W.H., (1994) Process Dynamics Modeling and Control, Topics in Chemical Engineering, p. 1260. , Oxford University Press Don Mills, ON, CAN
dc.relation.referencesMarlin, T., Process Control. Designing Processes and Control Systems for Diynamic Performance (2000), McGraw Hill
dc.relation.referencesRomagnoli, J.A., Palazoglu, A., Introduction to Process Control (2012), second ed. CRC Press Boca Raton, FL, USA
dc.relation.referencesJoshi, M., Uniyal, J., Juneja, P.K., Design of inverse response compensator for complex process (2016), pp. 1-6. , 2016 International Conference on Advances in Computing, Communication, Automation, ICACCA Spring
dc.relation.referencesMiyasato, Y., Model reference adaptive control for non-minimum phase system by periodic feedback (1991) IFAC Proc. Vol., 24 (1), pp. 399-404. , IFAC Symposium on Intelligent Tuning and Adaptive Control, Singapore, 15-17 January 1991
dc.relation.referencesHoagg, J.B., Model reference adaptive control for nonminimum-phase systems using a surrogate tracking error (2011), pp. 360-365. , Proceedings of the 2011 50th IEEE Conference on Decision and Control and European Control Conference
dc.relation.referencesVu, K.M., A model predictive controller for inverse response control systems (2015) IFAC-PapersOnLine, 48 (8), pp. 562-567. , 9th IFAC Symposium on Advanced Control of Chemical Processes ADCHEM 2015
dc.relation.referencesAoyama, A., Doyle, F.J., Venkatasubramanian, V., Control-affine neural network approach for nonminimum-phase nonlinear process control (1996) J. Process Control, 6 (1), pp. 17-26
dc.relation.referencesKadu, C.B., Sakhare, D., Improved inverse response of boiler drum level using fuzzy self adaptive PID controller (2015) Int. J. Eng. Trends Technol., 19, pp. 140-144
dc.relation.referencesIrshad, M., Ali, A., Optimal tuning rules for PI/PID controllers for inverse response processes (2018) IFAC-PapersOnLine, 51 (1), pp. 413-418. , 5th IFAC Conference on Advances in Control and Optimization of Dynamical Systems ACODS 2018
dc.relation.referencesScali, C., Rachid, A., Analytical design of proportional-integral-derivative controllers for inverse response process (1998) Ind. Eng. Chem. Res., 37 (4), pp. 1372-1379
dc.relation.referencesLuyben, W.L., Tuning proportional-integral controllers for processes with both inverse response and deadtime (2000) Ind. Eng. Chem. Res., 39 (4), pp. 973-976
dc.relation.referencesChien, I.-L., Chung, Y.-C., Chen, B.-S., Chuang, C.-Y., Simple PID controller tuning method for processes with inverse response plus dead time or large overshoot response plus dead time (2003) Ind. Eng. Chem. Res., 42 (20), pp. 4461-4477
dc.relation.referencesSree, R.P., Chidambaram, M., Simple method of tuning PI controller for stable inverse response systems (2003) J. Indian Inst. Sci., 83, pp. 73-85
dc.relation.referencesChen, D., Seborg, D.E., PI/PID controller design based on direct synthesis and disturbance rejection (2002) Ind. Eng. Chem. Res., 41 (19), pp. 4807-4822
dc.relation.referencesShamsuzzoha, M., Lee, M., PID controller design for integrating processes with time delay (2008) Korean J. Chem. Eng., 25 (4), pp. 637-645
dc.relation.referencesPai, N., Chang, S., Huangb, C., Tuning PI/PID controllers for integrating processes with deadtime and inverse response by simple calculations (2010) J. Process Control, 20 (6), pp. 726-733
dc.relation.referencesBegum, K.G., Rao, A.S., Radhakrishnan, T., Enhanced IMC based PID controller design for non-minimum phase (NMP) integrating processes with time delays (2017) ISA Trans., 68, pp. 223-234
dc.relation.referencesPatil, P., Rao, C.S., Enhanced PID controller for non-minimum phase second order plus time delay system (2019) Chem. Prod. Process Model., 14 (3)
dc.relation.referencesXu, G., Wu, T., Zhang, J., Yue, G., The two-degree-of-freedom parallel control for inverse response plus time delay (2019) Syst. Sci. Control Eng., 7 (2), pp. 90-95
dc.relation.referencesKaya, I., Integral-proportional derivative tuning for optimal closed loop responses to control integrating processes with inverse response (2020) Trans. Inst. Meas. Control, pp. 1-12
dc.relation.referencesSiddiqui, M.A., Anwar, M.N., Laskar, S.H., Tuning of PIDF controller in parallel control structure for integrating process with time delay and inverse response characteristic (2020) J. Control Autom. Electr. Syst., 31 (4), pp. 829-841
dc.relation.referencesCastellanos-Cárdenas, D., Castrillón, F., Vásquez, R.E., Smith, C., PID tuning method based on IMC for inverse-response second-order plus dead time processes (2020) Processes, 8 (9), p. 1183
dc.relation.referencesDomínguez, X., Camacho, O., Leica, P., Rosales, A., A fixed-frequency Sliding-mode control in a cascade scheme for the half-bridge bidirectional DC-DC converter (2016), pp. 1-6. , Proceedings of the 2016 IEEE Ecuador Technical Chapters Meeting, ETCM
dc.relation.referencesHuerta, H., Loukianov, A.G., Cañedo, J.M., Passivity sliding mode control of large-scale power systems (2019) IEEE J. CST, 27 (3), pp. 1219-1227
dc.relation.referencesWang, Y., Feng, Y., Zhang, X., Liang, J., A new reaching law for antidisturbance sliding-mode control of pmsm speed regulation system (2020) IEEE J. PWRE, 35 (4), pp. 4117-4126
dc.relation.referencesHerrera, M., Chamorro, W., Gómez, A.P., Camacho, O., Sliding mode control: An approach to control a quadrotor (2015), pp. 314-319. , Proceedings of the 2015 Asia-Pacific Conference on Computer Aided System Engineering
dc.relation.referencesCapito, L., Proaño, P., Camacho, O., Rosales, A., Scaglia, G., Experimental comparison of control strategies for trajectory tracking for mobile robots (2016) Int. J. Autom. Control, 10, pp. 308-327
dc.relation.referencesLeica, P., Camacho, O., Lozada, S., Guaman, R., Chavez Garcia, G., Andaluz, V., Comparison of control schemes for path tracking of mobile manipulators (2017) Int. J. Model. Identif. Control, 28, p. 86
dc.relation.referencesMera, M., Ríos, H., Martínez, E.A., A sliding-mode based controller for trajectory tracking of perturbed unicycle mobile robots (2020) Control Eng. Prac., 102
dc.relation.referencesSalinas, L.R., Santiago, D., Slawiñski, E., Mut, V.A., Chavez, D., Leica, P., Camacho, O., P+D plus sliding mode control for bilateral teleoperation of a mobile robot (2018) Int. J. Control Autom. Syst., 16 (4), pp. 1927-1937
dc.relation.referencesYang, H., Liu, L., Wang, Y., Observer-based sliding mode control for bilateral teleoperation with time-varying delays (2019) Control Eng. Pract., 91
dc.relation.referencesCamacho, O., Rojas, R., García, W., Variable structure control applied to chemical processes with inverse response (1999) ISA Trans., 38 (1), pp. 55-72
dc.relation.referencesCamacho, O., Smith, C.A., Sliding mode control: an approach to regulate nonlinear chemical processes (2000) ISA Trans., 39 (2), pp. 205-218
dc.relation.referencesCamacho, O., Smith, C., Moreno, W., Development of an internal model sliding mode controller (2003) Ind. Eng. Chem. Res., 42 (3), pp. 568-573
dc.relation.referencesRojas, R., Camacho, O., González, L., A sliding mode control proposal for open-loop unstable processes (2004) ISA Trans., 43 (2), pp. 243-255
dc.relation.referencesChen, C.-T., Peng, S.-T., Design of a sliding mode control system for chemical processes (2005) J. Process Control, 15 (5), pp. 515-530
dc.relation.referencesCamacho, O., Rojas, R., García-Gabín, W., Some long time delay sliding mode control approaches (2007) ISA Trans., 46 (1), pp. 95-101
dc.relation.referencesMusmade, B., Munje, R., Patre, B., Design of sliding mode controller to chemical processes for improved performance (2011) Int. J. Control Autom., 4, pp. 15-32
dc.relation.referencesRasul, T., Pathak, M., Control of nonlinear chemical process using sliding mode control (2016), pp. 1-5. , 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES
dc.relation.referencesMehta, U., Kaya, I., Smith predictor with sliding mode control for processes with large dead times (2017) J. Electr. Eng., 68, pp. 463-469
dc.relation.referencesHerrera, M., Camacho, O., Leiva, H., Smith, C., An approach of dynamic sliding mode control for chemical processes (2020) J. Process Control, 85, pp. 112-120
dc.relation.referencesYin, L., Turesson, G., Tunestål, P., Johansson, R., Sliding mode control on receding horizon: Practical control design and application (2021) Control Eng. Pract., 109
dc.relation.referencesda Silva, L.R., Flesch, R.C.C., Normey-Rico, J.E., Controlling industrial dead-time systems: When to use a PID or an advanced controller (2020) ISA Trans., 99, pp. 339-350
dc.relation.referencesLima, D.M., Lima, B.M., Normey-Rico, J.E., A predictor for dead-time systems based on the Kalman filter for improved disturbance rejection and robustness (2021) J. Process Control, 105, pp. 108-116
dc.relation.referencesTokat, S., Eksin, I., Güzelkaya, M., New approaches for on-line tuning of the linear sliding surface slope in sliding mode controllers (2003) Turk. J. Electr. Eng. Comput. Sci., 11 (1), pp. 45-59
dc.relation.referencesBoiko, I., Fridman, L., Iriarte, R., Pisano, A., Usai, E., Parameter tuning of second-order sliding mode controllers for linear plants with dynamic actuators (2006) Automatica, 42 (5), pp. 833-839
dc.relation.referencesAtaei, M., S.E. Shafiei
dc.relation.referencesPiltan, F., Boroomand, B., Jahed, A., Rezaie, H., Methodology of mathematical error-based tuning sliding ModeController (2012) Int. J. Eng., 2 (2), pp. 96-117
dc.relation.referencesRyu, S.-H., Park, J.-H., Auto-tuning of sliding mode control parameters using fuzzy logic (2001), 1, pp. 618-623. , Proceedings of the 2001 American Control Conference., Cat. No.01CH37148, vol.1
dc.relation.referencesAryanfar, A., Khammar, M., Piltan, F., Design a robust self-tuning fuzzy sliding mode control for second order systems (2012) Int. J. Eng. Sci. Res., 3, pp. 711-717
dc.relation.referencesFurat, M., Eker, I., Chattering-eliminated adaptive sliding-mode control: An experimental comparison study (2014) Turk. J. Electr. Eng. Comput. Sci., 24
dc.relation.referencesWang, T., Fei, J., Adaptive neural control of active power filter using fuzzy sliding mode controller (2016), 4, pp. 6816-6822. , IEEE O ACC
dc.relation.referencesLi, H., Wang, J., Du, H., Karimi, H.R., Adaptive sliding mode control for Takagi–Sugeno fuzzy systems and its applications (2018) IEEE J. FUZZ, 26 (2), pp. 531-542
dc.relation.referencesBaez, E., Bravo, Y., Chavez, D., Camacho, O., Tuning parameters optimization approach for dynamical sliding mode controllers (2018) IFAC-PapersOnLine, 51 (13), pp. 656-661
dc.relation.referencesPatiño, K., Chávez, D., Camacho, O., Application of particle swarm optimization for tuning a dynamic sliding mode control for system with inverse response (2019), pp. 1-6. , 2019 IEEE 4th Colombian Conference on Automatic Control, CCAC
dc.relation.referencesShaalan, A.S., El-Nagar, A.M., El-Bardini, M., Sharaf, M., Embedded fuzzy sliding mode control for polymer extrusion process (2020) ISA Trans., 103, pp. 237-251
dc.relation.referencesChu, Y., Hou, S., Fei, J., Continuous terminal sliding mode control using novel fuzzy neural network for active power filter (2021) Control Eng. Pract., 109
dc.relation.referencesBalaguer, P., Alfaro, V., Arrieta, O., Second order inverse response process identification from transient step response (2011) ISA Trans., 50 (2), pp. 231-238
dc.relation.referencesSeborg, D., Edgar, T., Mellicamp, D., Doyle, F., Process Dynamics and Control (2017), fourth ed. Wiley New York
dc.relation.referencesCamacho, O.E., A New Approach to Design and Tune Sliding Mode Controllers for Chemical Processes (1996), University of South Florida
dc.relation.referencesSlotine, J.-J., Li, W., Applied Nonlinear Control (1991), Prentince-Hall
dc.relation.referencesCastellanos, D., Castrillón, F., Camacho, O., Gutiérrez, S., Posada, N.L., Order reduction rules based on Statisticaltechniques for inverse response processes (2020), pp. 1-6. , Proceedings of IEEE 2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA), CIIMA, Cartagena, Colombia
dc.relation.referencesTavakoli, S., Fleming, P., Optimal tuning of PI controllers for first order plus dead timelong dead time models using dimensional analysis (2003), pp. 1-5. , Proceedings of the European Control Conference ECC2003, Cambridge, UK
dc.relation.referencesMontgomery, D.C., Design and Analysis of Experiments (2019), tenth ed. Wiley New York, United States
dc.relation.referencesBox, G.E., Hunter, J.S., Hunter, W.G., Statistics for Experimenters. Design, Innovation and Discovery (2005), second ed. Wiley-Interscience New Jersey
dc.relation.referencesShinskey, F., Feedback Controllers for the Process Industries (1994), McGraw Hill
dc.relation.referencesShrivastava, N., Varshney, P., Comparative analysis of order reduction techniques (2016), pp. 46-50. , Proceedings of the 2016 Second International Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity, CIPECH
dc.relation.referencesO'Dwyer, A., Handbook of PI and PID Controller Tuning Rules (2009), third ed. Imperial College Press London, UK
dc.relation.referencesSkogestad, S., Simple analytic rules for model reduction and PID controller tuning (2003) J. Process Control, 13 (4), pp. 291-309
dc.relation.referencesMontgomery, D.C., Jennings, C.L., Kulahci, M., Introduction to Time Series Analysis and Forecasting (2015), second ed. Wiley New York, United States
dc.relation.referencesRojas, R., García-Gabín, W., Camacho, O., On sliding mode control for inverse response processes (2005) IFAC Proc. Vol., 38 (1), pp. 525-530
dc.relation.referencesBáez, E., Bravo, Y., Leica, P., Chávez, D., Camacho, O., Dynamical sliding mode control for nonlinear systems with variable delay (2017), pp. 1-6. , 2017 IEEE 3rd Colombian Conference on Automatic Control, CCAC, Cartagena, Colombia
dc.relation.referencesTsai, S.-H., Robust H∞ control for van de vusse reactor via T–S fuzzy bilinear scheme (2011) Expert Syst. Appl., 38 (5), pp. 4935-4944
dc.relation.referencesKuntanapreeda, S., Marusak, P.M., Nonlinear extended output feedback control for CSTRs with van de vusse reaction (2012) Comput. Chem. Eng., 41, pp. 10-23
dc.relation.referencesKaiser, N.M., Flassig, R.J., Sundmacher, K., Reactor-network synthesis via flux profile analysis (2018) Chem. Eng. J., 335, pp. 1018-1030
dc.relation.referencesNguyen, T.S., Hoang, N.H., Hussain, M., Tracking error plus damping injection control of non-minimum phase processes (2018) IFAC-PapersOnLine, 51 (18), pp. 643-648
dc.relation.referencesHerrera, M., Morales, L., Rosales, A., Garcia, Y., Camacho, O., Processes with variable dead time: Comparison of hybrid control schemes based on internal model (2017), pp. 1-6. , Proceedings of the 2017 IEEE Second Ecuador Technical Chapters Meeting, ETCM
dc.relation.referencesBequette, B., Process Control. Modeling, Design, and Simulation (2002), Prentice Hall PTR
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem