Mostrar el registro sencillo del ítem

dc.contributor.authorBecerra-Agudelo E
dc.contributor.authorLópez J.E
dc.contributor.authorBetancur-García H
dc.contributor.authorCarbal-Guerra J
dc.contributor.authorTorres-Hernández M
dc.contributor.authorSaldarriaga J.F.
dc.date.accessioned2023-10-24T19:24:47Z
dc.date.available2023-10-24T19:24:47Z
dc.date.created2022
dc.identifier.issn24058440
dc.identifier.urihttp://hdl.handle.net/11407/8000
dc.description.abstractSoil acidification and increased bioavailability of Ni are problems that affect agricultural soils. This study aims to compare the effects of both lime and biochar from corn stover in soil acidity correction, improving soil physicochemical properties and soil re-acidification resistance. As well as assesseing the impacts on human health risk caused by bioavailability of nickel. A greenhouse pot experiment was conducted for 30 days to determine the effect of biochar and lime on soil physicochemical properties and nickel bioavailability. Afterwards, a laboratory test was carried out to determine the repercussions of both amendments on soil resistance to re-acidification and re-mobilization of nickel. Human health risk was determined using nickle bioavailable concentration. Overall, the results of this study showed that biochar application significantly reduced soil acidity from 8.2 ± 0.8 meq 100 g−1 to 1.9 ± 0.3 meq 100 g−1, this reduction markedly influenced the bioavailability of nickel, which decreased significantly. Moreover, soil physicochemical properties and soil resistance to acidification were improved. Furthermore, biochar significantly reduced human health risk compared to lime application, even under a re-acidification scenario. It was possible to verify that Ni immobilization in the soil was increased when biochar was used. Soil Ni immobilization is associated with co-precipitation and chemisorption. Hence, it was demonstrated that biochar is more effective than lime in reducing soil acidity and remedying nickel-contaminated agricultural soils. © 2022 The Author(s)eng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85136531881&doi=10.1016%2fj.heliyon.2022.e10221&partnerID=40&md5=c9098f5528c55778b1d02d875cc6260d
dc.sourceHeliyon
dc.sourceHeliyoneng
dc.subjectAcidic soilseng
dc.subjectAmendmenteng
dc.subjectPlant growtheng
dc.subjectPotential toxic metalseng
dc.subjectSoil remediationeng
dc.titleAssessment of the application of two amendments (lime and biochar) on the acidification and bioavailability of Ni in a Ni-contaminated agricultural soils of northern Colombiaeng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.type.spaArtículo
dc.identifier.doi10.1016/j.heliyon.2022.e10221
dc.relation.citationvolume8
dc.relation.citationissue8
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationBecerra-Agudelo, E., Semillero de Investigación en Ciencias Ambientales – SICA, Diagnóstico y Control de la Contaminación, Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 – 46, Medellín, 050034, Colombia
dc.affiliationLópez, J.E., Semillero de Investigación en Ciencias Ambientales – SICA, Diagnóstico y Control de la Contaminación, Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 – 46, Medellín, 050034, Colombia, Facultad de Ingenierías, Programa de Ingeniería Ambiental, Universidad de Medellín, Carrera 87 N° 30-65, Medellín, 050026, Colombia, Facultad de Ingenierías, Tecnológico de Antioquia Institución Universitaria, Calle 78b # 72A-220, Medellín, 050034, Colombia
dc.affiliationBetancur-García, H., Semillero de Investigación en Ciencias Ambientales – SICA, Diagnóstico y Control de la Contaminación, Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 – 46, Medellín, 050034, Colombia
dc.affiliationCarbal-Guerra, J., Semillero de Investigación en Ciencias Ambientales – SICA, Diagnóstico y Control de la Contaminación, Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 – 46, Medellín, 050034, Colombia
dc.affiliationTorres-Hernández, M., Semillero de Investigación en Ciencias Ambientales – SICA, Diagnóstico y Control de la Contaminación, Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 – 46, Medellín, 050034, Colombia
dc.affiliationSaldarriaga, J.F., Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, 111711, Colombia
dc.relation.referencesAdamo, P., Zampella, M., Chemical speciation to assess potentially toxic metals’ (PTMS’) bioavailability and geochemical forms in polluted soils (2008) Environ. Geochem., pp. 175-212. , Elsevier
dc.relation.referencesAhmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Ok, Y.S., Biochar as a sorbent for contaminant management in soil and water: a review (2014) Chemosphere, 99, pp. 19-33
dc.relation.referencesAli, U., Shaaban, M., Bashir, S., Fu, Q., Zhu, J., Shoffikul Islam, M., Hu, H., Effect of rice straw, biochar and calcite on maize plant and Ni bio-availability in acidic Ni contaminated soil (2020) J. Environ. Manag., 259
dc.relation.referencesAlonso-Gómez, L., Cruz-Dominguez, A., Jiménez-Madrid, D., Ocampo-Duran Á, Biochar as an amendment in an oxisol and its effect on the growth of corn (2016) Rev. Actual Divulg. Científica., 19, pp. 341-349
dc.relation.referencesBeverwijk, A., Particle size analysis of soils by means of the hydrometer method (1967) Sediment. Geol., 1, pp. 403-406
dc.relation.referencesBolan, N.S., Adriano, D.C., Curtin, D., Soil Acidification and Liming Interactions with Nutrientand Heavy Metal Transformationand Bioavailability (2003), pp. 215-272
dc.relation.referencesBorggaard, O.K., Holm, P.E., Strobel, B.W., Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: a review (2019) Geoderma, 343, pp. 235-246
dc.relation.referencesChintala, R., Mollinedo, J., Schumacher, T.E., Malo, D.D., Julson, J.L., Effect of biochar on chemical properties of acidic soil (2014) Arch. Agron Soil Sci., 60, pp. 393-404
dc.relation.referencesCooper, J., Greenberg, I., Ludwig, B., Hippich, L., Fischer, D., Glaser, B., Kaiser, M., Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions (2020) Agric. Ecosyst. Environ., 295. , Elsevier
dc.relation.referencesCüce, H., Kalipci, E., Ustaoglu, F., Baser, V., Türkmen, M., Ecotoxicological health risk analysis of potential toxic elements accumulation in the sediments of Kızılırmak River (2022) Int. J. Environ. Sci. Technol.
dc.relation.referencesda Silva, E.B., Gao, P., Xu, M., Guan, D., Tang, X., Ma, L.Q., Background concentrations of trace metals As, Ba, Cd, Co, Cu, Ni, Pb, Se, and Zn in 214 Florida urban soils: different cities and land uses (2020) Environ. Pollut., 264
dc.relation.referencesDai, Z., Zhang, X., Tang, C., Muhammad, N., Wu, J., Brookes, P.C., Xu, J., Potential role of biochars in decreasing soil acidification - a critical review (2017) Sci. Total Environ., 581-582, pp. 601-611
dc.relation.referencesDíaz-Zorita, M., Soil organic carbon recovery by the Walkley-Black method in a typic hapludoll (1999) Commun. Soil Sci. Plant Anal., 30, pp. 739-745
dc.relation.referencesDong, Y., Wang, H., Chang, E., Zhao, Z., Wang, R., Xu, R., Jiang, J., Alleviation of aluminum phytotoxicity by canola straw biochars varied with their cultivating soils through an investigation of wheat seedling root elongation (2019) Chemosphere, 218, pp. 907-914
dc.relation.referencesDu, Y., Wang, X., Ji, X., Zhang, Z., Saha, U.K., Xie, W., Xie, Y., Tan, C., Effectiveness and potential risk of CaO application in {Cd}-contaminated paddy soil (2018) Chemosphere, 204, pp. 130-139
dc.relation.referencesFageria, N.K., Baligar, V.C., Chapter 7 ameliorating soil acidity of tropical oxisols by liming for sustainable crop production (2008) Adv. Agron., pp. 345-399. , 99 99. Elsevier
dc.relation.referencesGong, H., Zhao, L., Rui, X., Hu, J., Zhu, N., A review of pristine and modified biochar immobilizing typical heavy metals in soil: applications and challenges (2022) J. Hazard Mater., 128668
dc.relation.referencesGonnelli, C., Renella, G., Chromium and Nickel (2013), pp. 313-333
dc.relation.referencesGuo, F., Ding, C., Zhou, Z., Huang, G., Wang, X., Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification (2018) Ecotoxicol. Environ. Saf., 161, pp. 164-172
dc.relation.referencesHaider, F.U., Wang, X., Farooq, M., Hussain, S., Cheema, S.A., Ain, N.U., Virk, A.L., Liqun, C., Biochar application for the remediation of trace metals in contaminated soils: implications for stress tolerance and crop production (2022) Ecotoxicol. Environ. Saf., 230
dc.relation.referencesHamid, Y., Tang, L., Hussain, B., Usman, M., Lin, Q., Rashid, M.S., He, Z., Yang, X., Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: a review (2020) Sci. Total Environ., 707
dc.relation.referencesHassan, M.U., Chattha, M.U., Khan, I., Chattha, M.B., Aamer, M., Nawaz, M., Ali, A., Khan, T.A., Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review (2019) Environ. Sci. Pollut. Res., 26, pp. 12673-12688
dc.relation.referencesHerrera, K., Morales, L.F., Tarazona, N.A., Aguado, R., Saldarriaga, J.F., Use of biochar from rice husk pyrolysis: Part A: recovery as an adsorbent in the removal of emerging compounds (2022) ACS Omega, 7, pp. 7625-7637
dc.relation.referencesHouben, D., Evrard, L., Sonnet, P., Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar (2013) Chemosphere, 92, pp. 1450-1457
dc.relation.referencesSuelos y tierras de Colombia (2015)
dc.relation.referencesSoil Quality (2005), Determination of pH
dc.relation.referencesSoil Quality. Determination of Total Nitrogen-Modified Kjeldahl Method (1995)
dc.relation.referencesSoil Quality. Determination of Exchangeable Acidity Using Bairum Chloride Solution as Extractant (2018)
dc.relation.references(2020), https://www.iso.org/standard/80891.html, ISO/DIS 22171 Soil Quality. Determination of potential cation exchange capacity (CEC) and exchangeable cations buffered at pH 7, using a molar ammonium acetate solution. pages 7
dc.relation.referencesJeffery, S., Abalos, D., Prodana, M., Bastos, A.C., Groenigen, J.V., Hungate, B.A., Verheijen, F., Biochar boosts tropical but not temperate crop yields (2017) Environ. Res. Lett., 12
dc.relation.referencesKizito, S., Luo, H., Lu, J., Bah, H., Dong, R., Wu, S., Role of nutrient-enriched biochar as a soil amendment during maize growth: exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand (2019) Sustainability, 11, p. 3211
dc.relation.referencesKusin, F.M., Azani, N.N.M., Hasan, S.N.M.S., Sulong, N.A., Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment (2018) CATENA, 165, pp. 454-464
dc.relation.referencesLópez, J.E., Builes, S., Heredia Salgado, M.A., Tarelho, L.A.C., Arroyave, C., Aristizábal, A., Chavez, E., Adsorption of cadmium using biochars produced from agro-residues (2020) J. Phys. Chem. C, 124, pp. 14592-14602
dc.relation.referencesLópez, J.E., Arroyave, C., Aristizábal, A., Almeida, B., Builes, S., Chávez, E., Reducing cadmium bioaccumulation in Theobroma cacao using biochar: basis for scaling-up to field (2022) Heliyon
dc.relation.referencesLuo, X.S., Ding, J., Xu, B., Wang, Y.J., Li, H.B., Yu, S., Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils (2012) Sci. Total Environ., 424, pp. 88-96
dc.relation.referencesMa, J.Y., Bao, X.C., Tian, W., Cui, D.L., Zhang, M.Y., Yang, J., Xiang, P., Ma, L.Q., Effects of soil-extractable metals Cd and Ni from an e-waste dismantling site on human colonic epithelial cells Caco-2: mechanisms and implications (2022) Chemosphere, 292
dc.relation.referencesMarrugo-Negrete, J., Pinedo-Hernández, J., Díez, S., Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia (2017) Environ. Res., 154, pp. 380-388
dc.relation.referencesMasud, M.M., Li, J.Y., Xu, R.K., Use of alkaline slag and crop residue biochars to promote base saturation and reduce acidity of an acidic Ultisol (2014) Pedosphere, 24, pp. 791-798
dc.relation.referencesMohammadi, A.A., Zarei, A., Majidi, S., Ghaderpoury, A., Hashempour, Y., Saghi, M.H., Alinejad, A., Ghaderpoori, M., Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran (2019) MethodsX, 6, pp. 1642-1651
dc.relation.referencesMorales, L.F., Herrera, K., López, J.E., Saldarriaga, J.F., Use of biochar from rice husk pyrolysis: assessment of reactivity in lime pastes (2021) Heliyon, 7
dc.relation.referencesPalansooriya, K.N., Shaheen, S.M., Chen, S.S., Tsang, D.C.W., Hashimoto, Y., Hou, D., Bolan, N.S., Ok, Y.S., Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review (2020) Environ. Int., 134
dc.relation.referencesPansu, M., Gautheyrou, J., Mineralogical, Organic and Inorganic Methods (2006)
dc.relation.referencesSarfraz, R., Shakoor, A., Abdullah, M., Arooj, A., Hussain, A., Xing, S., Impact of integrated application of biochar and nitrogen fertilizers on maize growth and nitrogen recovery in alkaline calcareous soil (2017) Soil Sci. Plant Nutr., 63, pp. 488-498. , Taylor & Francis
dc.relation.referencesSepúlveda-Cadavid, C., Romero, J.H., Torres, M., Becerra-Agudelo, E., López, J.E., Evaluation of a biochar-based slow-release P fertilizer to improve spinacia oleracea P use, yield, and nutritional quality (2021) J. Soil Sci. Plant Nutr.
dc.relation.referencesShi, R., Hong, Z., Li, J., Jiang, J., Kamran, M.A., Xu, R., Qian, W., Peanut straw biochar increases the resistance of two Ultisols derived from different parent materials to acidification: a mechanism study (2018) J. Environ. Manag., 210, pp. 171-179
dc.relation.referencesShi, R.-Y., Ni, N., Nkoh, J.N., Dong, Y., Zhao, W.R., Pan, X.Y., Li, J.Y., Qian, W., Biochar retards Al toxicity to maize (Zea mays L.) during soil acidification: the effects and mechanisms (2020) Sci. Total Environ., 719
dc.relation.referencesSumalatha, J., Sivapullaiah, P.V., Prabhakara, R., Immobilization remediation of a heavy metals contaminated soil: a case study of dump site at Bangalore, India (2022) J. Inst. Eng. Ser. A.
dc.relation.referencesTessier, A., Campbell, P.G.C., Bisson, M., Sequential extraction procedure for the speciation of particulate trace metals (1979) Anal. Chem., 51, pp. 844-851
dc.relation.referencesTuran, V., Ramzani, P.M.A., Ali, Q., Abbas, F., Iqbal, M., Irum, A., Khan, W.D., Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil (2018) Arch. Agron Soil Sci., 64, pp. 1053-1067
dc.relation.referencesIntegrated Risk Information System of the (2012), US Environmental Protection Agency
dc.relation.referencesUstaoğlu, F., Ecotoxicological risk assessment and source identification of heavy metals in the surface sediments of Çömlekci stream, Giresun, Turkey (2021) Environ. Foren., 22, pp. 130-142
dc.relation.referencesWan, Q., Yuan, J.-H., Xu, R.-K., Li, X.-H., Pyrolysis temperature influences ameliorating effects of biochars on acidic soil (2014) Environ. Sci. Pollut. Res., 21, pp. 2486-2495
dc.relation.referencesWang, C., Li, W., Yang, Z., Chen, Y., Shao, W., Ji, J., An invisible soil acidification: {Critical} role of soil carbonate and its impact on heavy metal bioavailability (2015) Sci. Rep., 5
dc.relation.referencesWu, S., Zhang, Y., Tan, Q., Sun, X., Wei, W., Hu, C., Biochar is superior to lime in improving acidic soil properties and fruit quality of Satsuma Mandarin (2020) Sci. Total Environ., 714
dc.relation.referencesXia, H., Riaz, M., Zhang, M., Liu, B., El-Desouki, Z., Jiang, C., Biochar increases nitrogen use efficiency of maize by relieving aluminum toxicity and improving soil quality in acidic soil (2020) Ecotoxicol. Environ. Saf., 196
dc.relation.referencesXian, X., Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants (1989) Plant Soil, 113, pp. 257-264
dc.relation.referencesZhang, H., Chen, C., Gray, E.M., Boyd, S.E., Yang, H., Zhang, D., Roles of biochar in improving phosphorus availability in soils: a phosphate adsorbent and a source of available phosphorus (2016) Geoderma, 276, pp. 1-6
dc.relation.referencesZhu, J., Gao, W., Ge, L., Zhao, W., Zhang, G., Niu, Y., Immobilization properties and adsorption mechanism of nickel(II) in soil by biochar combined with humic acid-wood vinegar (2021) Ecotoxicol. Environ. Saf., 215
dc.relation.referencesZulkafflee, N.S., Mohd Redzuan, N.A., Hanafi, Z., Selamat, J., Ismail, M.R., Praveena, S.M., Abdull Razis, A.F., Heavy metal in paddy soil and its bioavailability in rice using in vitro digestion model for health risk assessment (2019) Int. J. Environ. Res. Publ. Health, 16, p. 4769
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem