Show simple item record

dc.contributor.authorGrisales-Cifuentes C.M
dc.contributor.authorSerna-Galvis E.A
dc.contributor.authorAcelas N
dc.contributor.authorPorras J
dc.contributor.authorFlórez E
dc.contributor.authorTorres-Palma R.A.
dc.date.accessioned2023-10-24T19:24:49Z
dc.date.available2023-10-24T19:24:49Z
dc.date.created2022
dc.identifier.issn3014797
dc.identifier.urihttp://hdl.handle.net/11407/8002
dc.description.abstractBiochar (BP) obtained from palm fiber wastes was combined with H2O2, peroxymonosulfate (PMS), or persulfate (PDS) to treat valsartan, acetaminophen, and cephalexin in water. BP activated PMS and PDS but no H2O2. Computational calculations indicated that interactions of PMS and PDS with BP are more favored than those with HP. The highest synergistic effect was obtained for the removal of valsartan by BP + PMS. This carbocatalytic process was optimized, evaluating the effects of pH, BP dose, and peroxymonosulfate concentration, and minimizing the oxidant quantity to decrease costs and environmental impacts of the process. SO4•−, HO•, 1O2, and O2•- were the agents involved in the degradation of the pharmaceuticals. The reusability of BP was tested, showing that the carbocatalytic process removed ∼80% of target pollutants after 120 min of treatment even at the fourth reuse cycle. Also, the process decreased the phytotoxicity of the treated sample. Simulated hospital wastewater was treated and its components induced competing effects, but the system achieved the target pharmaceuticals removal in this matrix. Additionally, the analysis of environmental impact using a life cycle assessment unraveled that the carbocatalytic process had a carbon footprint of 2.87 Kg CO2-Eq, with the biochar preparation (which involves the use of ZnCl2 and electric energy consumption) as the main hotspot in the process. © 2022 Elsevier Ltdeng
dc.language.isoeng
dc.publisherAcademic Press
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85137396255&doi=10.1016%2fj.jenvman.2022.116148&partnerID=40&md5=c7e506c8c5b4f6ea0f20e1e3491ae5a6
dc.sourceJ. Environ. Manage.
dc.sourceJournal of Environmental Managementeng
dc.subjectBiochareng
dc.subjectCarbocatalysiseng
dc.subjectEnvironmental analysiseng
dc.subjectOxidants activationeng
dc.subjectPharmaceuticals removaleng
dc.subjectWater treatmenteng
dc.titleBiochar from palm fiber wastes as an activator of different oxidants for the elimination of pharmaceuticals from diverse classes in aqueous sampleseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1016/j.jenvman.2022.116148
dc.relation.citationvolume323
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationGrisales-Cifuentes, C.M., Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
dc.affiliationSerna-Galvis, E.A., Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia, Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
dc.affiliationAcelas, N., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationPorras, J., Grupo de Investigaciones Biomédicas Uniremington, Facultad de Ciencias de La Salud, Corporación Universitaria Remington (Uniremington), Calle 51 No. 51-27, Medellín, Colombia
dc.affiliationFlórez, E., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationTorres-Palma, R.A., Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
dc.relation.referencesAhangarnokolaei, M.A., Attarian, P., Ayati, B., Ganjidoust, H., Rizzo, L., Life cycle assessment of sequential and simultaneous combination of electrocoagulation and ozonation for textile wastewater treatment (2021) J. Environ. Chem. Eng., 106251
dc.relation.referencesBangari, R.S., Sinha, N., Adsorption of tetracycline, ofloxacin and cephalexin antibiotics on boron nitride nanosheets from aqueous solution (2019) J. Mol. Liq., 293
dc.relation.referencesBelalcázar-Saldarriaga, A., Prato-Garcia, D., Vasquez-Medrano, R., Photo-Fenton processes in raceway reactors: technical, economic, and environmental implications during treatment of colored wastewaters (2018) J. Clean. Prod., 182, pp. 818-829
dc.relation.referencesBielski, B.H.J., Cabelli, D.E., Arudi, R.L., Ross, A.B., Reactivity of HO2/O−2 radicals in aqueous solution (1985) J. Phys. Chem. Ref. Data, 14, pp. 1041-1100
dc.relation.referencesBruycker, K.D., Recyclable cross-linked hydroxythioether particles with tunable structures via robust and efficient thiol-epoxy dispersion polymerizations (2017) RSC Adv., 7, pp. 51763-51772
dc.relation.referencesCai, S., Zhang, Q., Wang, Z., Hua, S., Ding, D., Cai, T., Zhang, R., Pyrrolic N-rich biochar without exogenous nitrogen doping as a functional material for bisphenol A removal: performance and mechanism (2021) Appl. Catal. B Environ., 291
dc.relation.referencesCai, S., Zuo, X., Zhao, H., Yang, S., Chen, R., Chen, L., Zhang, R., Cai, T., Evaluation of N-doped carbon for the peroxymonosulfate activation and removal of organic contaminants from livestock wastewater and groundwater (2022) J. Mater. Chem., 10, pp. 9171-9183
dc.relation.referencesCarvalho Neves, L., Beber de Souza, J., de Souza Vidal, C.M., Herbert, L.T., de Souza, K.V., Geronazzo Martins, K., Young, B.J., Phytotoxicity indexes and removal of color, COD, phenols and ISA from pulp and paper mill wastewater post-treated by UV/H2O2 and photo-Fenton (2020) Ecotoxicol. Environ. Saf., 202
dc.relation.referencesChen, L., Yang, S., Zuo, X., Huang, Y., Cai, T., Ding, D., Biochar modification significantly promotes the activity of Co3O4 towards heterogeneous activation of peroxymonosulfate (2018) Chem. Eng. J., 354, pp. 856-865
dc.relation.referencesChen, X., Oh, W.D., Lim, T.T., Graphene-and CNTs-based carbocatalysts in persulfates activation: material design and catalytic mechanisms (2018) Chem. Eng. J., 354, pp. 941-976
dc.relation.referencesDai, J., Yan, J., Ding, D., Cai, T., Dissolved black carbon induced elimination of bisphenol a by peroxymonosulfate activation through HClO mediated oxidation process (2022) Chem. Eng. J., 446
dc.relation.referencesDevi, P., Das, U., Dalai, A.K., In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems (2016) Sci. Total Environ.
dc.relation.referencesDewil, R., Mantzavinos, D., Poulios, I., Rodrigo, M.A., New perspectives for advanced oxidation processes (2017) J. Environ. Manag., 195, pp. 93-99
dc.relation.referencesDíez-Mato, E., Cortezón-Tamarit, F.C., Bogialli, S., García-Fresnadillo, D., Marazuela, M.D., Phototransformation of model micropollutants in water samples by photocatalytic singlet oxygen production in heterogeneous medium (2014) Appl. Catal. B Environ., 160-161, pp. 445-455
dc.relation.referencesFarré, M.J., García-Montaño, J., Ruiz, N., Muñoz, I., Domènech, X., Peral, J., Life cycle assessment of the removal of Diuron and Linuron herbicides from water using three environmentally friendly technologies (2007) Environ. Technol., 28, pp. 819-830
dc.relation.referencesFoteinis, S., Monteagudo, J.M., Durán, A., Chatzisymeon, E., Environmental sustainability of the solar photo-Fenton process for wastewater treatment and pharmaceuticals mineralization at semi-industrial scale (2018) Sci. Total Environ., 612, pp. 605-612
dc.relation.referencesGhanbari, F., Giannakis, S., Samoili, S., Chapter 10 persulfate application for landfill leachate treatment: current status and challenges (2022) Persulfate-Based Oxidation Processes in Environmental Remediation, pp. 252-288. , The Royal Society of Chemistry
dc.relation.referencesGrisales-Cifuentes, C.M., Serna Galvis, E.A., Porras, J., Flórez, E., Torres-Palma, R.A., Acelas, N., Kinetics, isotherms, effect of structure, and computational analysis during the removal of three representative pharmaceuticals from water by adsorption using a biochar obtained from oil palm fiber (2021) Bioresour. Technol., 326
dc.relation.referencesGrisales, C.M., Salazar, L.M., Garcia, D.P., Treatment of synthetic dye baths by Fenton processes: evaluation of their environmental footprint through life cycle assessment (2019) Environ. Sci. Pollut. Res., 26, pp. 4300-4311
dc.relation.referencesGuinée, J., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., Haes, H., Voet, E., Life Cycle Assessment an Operational Guide to the ISO Standards (2001)
dc.relation.referencesHayyan, M., Hashim, M.A., Alnashef, I.M., Superoxide ion: generation and chemical implications (2016) Chem. Rev., 116, pp. 3029-3085
dc.relation.referencesHuang, S., Wang, T., Chen, K., Mei, M., Liu, J., Li, J., Engineered biochar derived from food waste digestate for activation of peroxymonosulfate to remove organic pollutants (2020) Waste Manag., 107, pp. 211-218
dc.relation.referencesJaafarzadeh, N., Ghanbari, F., Zahedi, A., Coupling electrooxidation and Oxone for degradation of 2,4-Dichlorophenoxyacetic acid (2,4-D) from aqueous solutions (2018) J. Water Proc. Eng., 22, pp. 203-209
dc.relation.referencesKiejza, D., Kotowska, U., Poli, W., Karpi, J., Peracids - new oxidants in advanced oxidation processes: the use of peracetic acid, peroxymonosulfate, and persulfate salts in the removal of organic micropollutants of emerging concern − A review (2021) Sci. Total Environ., 790
dc.relation.referencesLee, J., von Gunten, U., Kim, J., Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks (2020) Environ. Sci. Technol., 54, pp. 3064-3081. , () https://doi.org/ca
dc.relation.referencesLi, F., Duan, F., Ji, W., Gui, X., Biochar-activated persulfate for organic contaminants removal: efficiency, mechanisms and influencing factors (2020) Ecotoxicol. Environ. Saf., 198
dc.relation.referencesLibralato, G., Costa Devoti, A., Zanella, M., Sabbioni, E., Mičetić, I., Manodori, L., Pigozzo, A., Volpi Ghirardini, A., Phytotoxicity of ionic, micro- and nano-sized iron in three plant species (2016) Ecotoxicol. Environ. Saf., 123
dc.relation.referencesLiu, T., Zhang, D., Yin, K., Yang, C., Luo, S., Crittenden, J.C., Degradation of thiacloprid via unactivated peroxymonosulfate: the overlooked singlet oxygen oxidation (2020) Chem. Eng. J., 388
dc.relation.referencesLiu, T., Zhang, D., Yin, K., Yang, C., Luo, S., Crittenden, J.C., Degradation of thiacloprid via unactivated peroxymonosulfate: the overlooked singlet oxygen oxidation (2020) Chem. Eng. J., 388
dc.relation.referencesLiu, Y., Lin, Q., Guo, Y., Zhao, J., Luo, X., Zhang, H., Li, G., Liang, H., The nitrogen-doped multi-walled carbon nanotubes modified membrane activated peroxymonosulfate for enhanced degradation of organics and membrane fouling mitigation in natural waters treatment (2022) Water Res., 209
dc.relation.referencesLuo, J., Gao, Y., Song, T., Chen, Y., Activation of peroxymonosulfate by biochar and biochar-based materials for degrading refractory organics in water: a review (2021) Water Sci. Technol., 83, pp. 2327-2344
dc.relation.referencesLuo, K., Yang, Q., Pang, Y., Wang, D., Li, X., Lei, M., Huang, Q., Unveiling the mechanism of biochar-activated hydrogen peroxide on the degradation of ciprofloxacin (2019) Chem. Eng. J., 374
dc.relation.referencesLykoudi, A., Frontistis, Z., Vakros, J., Manariotis, I.D., Mantzavinos, D., Degradation of sulfamethoxazole with persulfate using spent coffee grounds biochar as activator (2020) J. Environ. Manag., 271
dc.relation.referencesMagdy, M., Gar, M., El-etriby, H.K., Comparative life cycle assessment of fi ve chemical methods for removal of phenol and its transformation products (2021) J. Clean. Prod., 291
dc.relation.referencesMañas, P., De las Heras, J., Phytotoxicity test applied to sewage sludge using Lactuca sativa L. and Lepidium sativum L. seeds (2018) Int. J. Environ. Sci. Technol., 15, pp. 273-280
dc.relation.referencesMartínez-Pachón, D., Serna-Galvis, E.A., Ibañez, M., Hernández, F., Ávila-Torres, Y., Torres-Palma, R.A., Moncayo-Lasso, A., Treatment of two sartan antihypertensives in water by photo-electro-Fenton using BDD anodes: degradation kinetics, theoretical analyses, primary transformations and matrix effects (2021) Chemosphere, 270
dc.relation.referencesMian, M.M., Liu, G., Activation of peroxymonosulfate by chemically modified sludge biochar for the removal of organic pollutants: understanding the role of active sites and mechanism (2020) Chem. Eng. J., 392
dc.relation.referencesMuñoz, I., Feral, J., Ayllón, J.A., Malato, S., Martin, M.J., Perrot, J.Y., Vincent, M., Domènech, X., Life-cycle assessment of a coupled advanced oxidation-biological process for wastewater treatment: comparison with granular activated carbon adsorption (2007) Environ. Eng. Sci., 24, pp. 638-651
dc.relation.referencesMyers, R.H., Montgomery, D.C., Anderson, C., Response surface methodology: process and product optimization using designed experiments (1997) J. Stat. Plann. Inference, 59, pp. 185-186
dc.relation.referencesOuyang, D., Chen, Y., Yan, J., Qian, L., Han, L., Chen, M., Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1,4-dioxane: important role of biochar defect structures (2019) Chem. Eng. J., 370, pp. 614-624
dc.relation.referencesParedes-Laverde, M., Silva-Agredo, J., Torres-Palma, R.A., Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents (2018) J. Environ. Manag., 213, pp. 98-108
dc.relation.referencesPatel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman, C.U., Mohan, D., Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods (2019) Chem. Rev., 119, pp. 3510-3673
dc.relation.referencesRivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M.Á., Prados-Joya, G., Ocampo-Pérez, R., Pharmaceuticals as emerging contaminants and their removal from water. A review (2013) Chemosphere, 93, pp. 1268-1287
dc.relation.referencesRodríguez-Chueca, J., Giannakis, S., Marjanovic, M., Kohantorabi, M., Gholami, M.R., Grandjean, D., de Alencastro, L.F., Pulgarín, C., Solar-assisted bacterial disinfection and removal of contaminants of emerging concern by Fe2+-activated HSO5- vs. S2O82- in drinking water (2019) Appl. Catal. B Environ., 248, pp. 62-72
dc.relation.referencesSabzehmeidani, M.M., Mahnaee, S., Ghaedi, M., Heidari, H., Roy, V.A.L., Carbon based materials: a review of adsorbents for inorganic and organic compounds (2021) Mater. Adv., 2, pp. 598-627
dc.relation.referencesSalazar, L.M., Grisales, C.M., Garcia, D.P., How does intensification influence the operational and environmental performance of photo-Fenton processes at acidic and circumneutral pH (2019) Environ. Sci. Pollut. Res., 26, pp. 4367-4380
dc.relation.referencesSbardella, L., Velo, I., Comas, J., Integrated assessment of sulfate-based AOPs for pharmaceutical active compound removal from wastewater (2020) J. Clean. Prod., 260
dc.relation.referencesSeburg, R.A., Ballard, J.M., Hwang, T., Sullivan, C.M., (2006) Photosensitized Degradation of Losartan Potassium in an Extemporaneous Suspension Formulation, 42, pp. 411-422
dc.relation.referencesSerna-Galvis, Efraim, A., Isaza-Pineda, L., Moncayo-Lasso, A., Hernández, F., Ibáñez, M., Torres-Palma, R.A., Comparative degradation of two highly consumed antihypertensives in water by sonochemical process. Determination of the reaction zone, primary degradation products and theoretical calculations on the oxidative process (2019) Ultrason. Sonochem., 58
dc.relation.referencesSerna-Galvis, Efraím, A., Silva-Agredo, J., Botero-Coy, A.M., Moncayo-Lasso, A., Hernández, F., Torres-Palma, R.A., Effective elimination of fifteen relevant pharmaceuticals in hospital wastewater from Colombia by combination of a biological system with a sonochemical process (2019) Sci. Total Environ., 670, pp. 623-632
dc.relation.referencesShan, R., Han, J., Gu, J., Yuan, H., Luo, B., Chen, Y., A review of recent developments in catalytic applications of biochar-based materials (2020) Resour. Conserv. Recycl.
dc.relation.referencesSolís, R.R., Mena, I.F., Nadagouda, M.N., Dionysiou, D.D., Adsorptive interaction of peroxymonosulfate with graphene and catalytic assessment via non-radical pathway for the removal of aqueous pharmaceuticals (2020) J. Hazard Mater., 384
dc.relation.referencesSun, C., Chen, T., Huang, Q., Zhan, M., Li, X., Yan, J., Activation of persulfate by CO2-activated biochar for improved phenolic pollutant degradation: performance and mechanism (2020) Chem. Eng. J., 380
dc.relation.referencesWacławek, S., Lutze, H.V., Grübel, K., Padil, V.V.T., Černík, M., Dionysiou, D.D., Chemistry of persulfates in water and wastewater treatment: a review (2017) Chem. Eng. J., 330, pp. 44-62
dc.relation.referencesWang, J., Shen, M., Wang, H., Du, Y., Zhou, X., Liao, Z., Wang, H., Chen, Z., Red mud modified sludge biochar for the activation of peroxymonosulfate: singlet oxygen dominated mechanism and toxicity prediction (2020) Sci. Total Environ., 740
dc.relation.referencesWang, J., Wang, S., Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants (2018) Chem. Eng. J.
dc.relation.referencesWang, Y., Dong, H., Li, L., Tian, R., Chen, J., Ning, Q., Wang, B., Zeng, G., Influence of feedstocks and modification methods on biochar's capacity to activate hydrogen peroxide for tetracycline removal (2019) Bioresour. Technol., 291
dc.relation.referencesWang, Z., Du, C., Ding, D., Chen, R., Yang, S., Cai, T., Recent advances in metal-free catalysts for the remediation of antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistant genes (ARGs) (2022) J. Mater. Chem., 10, pp. 15235-15266
dc.relation.referencesWei, J., Liu, Y., Zhu, Y., Li, J., Enhanced catalytic degradation of tetracycline antibiotic by persulfate activated with modified sludge bio-hydrochar (2020) Chemosphere, 247
dc.relation.referencesYan, J., Zuo, X., Yang, S., Chen, R., Cai, T., Ding, D., Evaluation of potassium ferrate activated biochar for the simultaneous adsorption of copper and sulfadiazine: competitive versus synergistic (2022) J. Hazard Mater., 424
dc.relation.referencesYun, E.-T., Yoo, H.-Y., Bae, H., Kim, H.-I., Lee, J., Exploring the role of persulfate in the activation process: radical precursor versus electron acceptor (2017) Environ. Sci. Technol., 51, pp. 10090-10099
dc.relation.referencesZhang, R., Li, Y., Wang, Z., Tong, Y., Sun, P., Biochar-activated peroxydisulfate as an effective process to eliminate pharmaceutical and metabolite in hydrolyzed urine (2020) Water Res., 177
dc.relation.referencesZhao, C., Shao, B., Yan, M., Liu, Z., Liang, Q., He, Q., Wu, T., Tang, L., Activation of peroxymonosulfate by biochar-based catalysts and applications in the degradation of organic contaminants: a review (2021) Chem. Eng. J., 416
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record